NEML2 2.0.0
Loading...
Searching...
No Matches
neml2::linalg Namespace Reference

Functions

SSR4 dsptrf (const Vec &evals, const R2 &evecs, const Vec &f, const Vec &df)
 Derivative of a spectral transformation.
 
std::pair< Vec, R2eigh (const SR2 &m)
 Calculate the eigenvalues and eigenvectors of a symmetric second order tensor.
 
SR2 ieigh (const Vec &eigvals, const R2 &eigvecs)
 Reconstruct the symmetric second order tensor from its eigenvalues and eigenvectors.
 
std::tuple< Tensor, Tensorlu_factor (const Tensor &A, bool pivot)
 
Tensor lu_solve (const Tensor &LU, const Tensor &pivots, const Tensor &B, bool left, bool adjoint)
 
Tensor solve (const Tensor &A, const Tensor &B)
 Solve the linear system A X = B.
 

Function Documentation

◆ dsptrf()

SSR4 dsptrf ( const Vec & evals,
const R2 & evecs,
const Vec & f,
const Vec & df )

Derivative of a spectral transformation.

A spectral transformation \( f \) is defined as

\[ f(\mathbf{M}) = \sum_i f(\lambda_i) \mathbf{v}_i \otimes \mathbf{v}_i \]

where \( \lambda_i \) are the eigenvalues and \( \mathbf{v}_i \) are the eigenvectors of \( \mathbf{M} \).

◆ eigh()

std::pair< Vec, R2 > eigh ( const SR2 & m)

Calculate the eigenvalues and eigenvectors of a symmetric second order tensor.

◆ ieigh()

SR2 ieigh ( const Vec & eigvals,
const R2 & eigvecs )

Reconstruct the symmetric second order tensor from its eigenvalues and eigenvectors.

◆ lu_factor()

std::tuple< Tensor, Tensor > lu_factor ( const Tensor & A,
bool pivot )

◆ lu_solve()

Tensor lu_solve ( const Tensor & LU,
const Tensor & pivots,
const Tensor & B,
bool left,
bool adjoint )

◆ solve()

Tensor solve ( const Tensor & A,
const Tensor & B )

Solve the linear system A X = B.