NEML2 2.0.0
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
neml2 Namespace Reference

Namespaces

namespace  crystallography
 
namespace  indexing
 
namespace  jit
 
namespace  linalg
 
namespace  utils
 

Classes

class  AnisotropicElasticity
 
class  ArrheniusParameter
 A scalar-valued parameter following an Arrhenius type relation. More...
 
class  AssociativeIsotropicPlasticHardening
 
class  AssociativeJ2FlowDirection
 The plastic flow direction assuming an associative J2 flow. More...
 
class  AssociativeKinematicPlasticHardening
 
class  AssociativePlasticFlow
 
class  AvramiErofeevNucleation
 Define the chemical reaction model. More...
 
class  BackwardEulerTimeIntegration
 
class  BufferStore
 Interface for object which can store buffers. More...
 
class  ChabochePlasticHardening
 
class  ChemicalReactionMechanism
 Define the chemical reaction model. More...
 
class  ComposedModel
 
class  ConstantParameter
 A parameter that is actually just a constant. More...
 
class  CopyVariable
 Copy the value of a variable into another variable. More...
 
class  CrystalMean
 
class  CubicElasticityConverter
 Converter for linearized elastic constants assuming cubic symmetry. More...
 
class  CubicElasticityTensor
 Define an cubic symmetry elasticity tensor in various ways. More...
 
class  Data
 
class  DependencyDefinition
 
class  DependencyResolver
 The DependencyResolver identifies and resolves the dependencies among a set of objects derived from DependencyDefinition. More...
 
class  Derivative
 
struct  Diagnosing
 
class  Diagnosis
 Exception type reserved for diagnostics, so as to not conceptually clash with other exceptions. More...
 
class  DiagnosticsInterface
 Interface for object making diagnostics about common setup errors. More...
 
struct  DiagnosticState
 
class  DiffusionLimitedReaction
 
class  Driver
 The Driver drives the execution of a NEML2 Model. More...
 
class  Eigenstrain
 
class  Elasticity
 
class  ElasticityConverter
 Base class for converters responsible for converting between different parameterizations of the linear elasticity tensor in different symmetry groups. More...
 
class  ElasticityInterface
 Interface for objects defining elasticity tensors in terms of other parameters. More...
 
class  ElasticStrainRate
 Calculate the elastic strain rate from crystal model kinematics. More...
 
class  EmptyPrimitiveTensor
 Create an empty PrimitiveTensor of type T from the input file. More...
 
class  EmptyTensor
 Create an empty Tensor from the input file. More...
 
class  EnumSelection
 Selection of an enum value from a list of candidates. More...
 
class  EnumSelectionBase
 
class  Factory
 
class  FactoryException
 
class  FillMillerIndex
 Create a single-batched "list" of Miller indices. More...
 
class  FillR2
 Create a filled R2 from the input file. More...
 
class  FillRot
 Create a filled R2 from the input file. More...
 
class  FillSR2
 Create a filled SR2 from the input file. More...
 
class  FillWR2
 Create a filled WR2 from the input file. More...
 
class  FischerBurmeister
 Define the Fischer Burmeister Complementary Conditions. More...
 
class  FixedSizeWorkGenerator
 Interface for work generators that generate a fixed number of batches, i.e., the total amount of work is known at construction time. More...
 
class  FixOrientation
 Swap orientation plane when the singularity at 2π is met with the modified Rodrigues vector. More...
 
class  FlowRule
 
class  ForwardEulerTimeIntegration
 
class  FredrickArmstrongPlasticHardening
 
class  FromTorchScript
 Read the tensors provided by a torch script file. More...
 
class  FullPrimitiveTensor
 Create a full PrimitiveTensor of type T from the input file. More...
 
class  FullTensor
 Create a full Tensor from the input file. More...
 
class  GeneralElasticity
 
class  GTNYieldFunction
 
class  GursonCavitation
 
class  HermiteSmoothStep
 
class  HITParser
 A parser is responsible for parsing an input file into a collection of options which can be used by the Factory to manufacture corresponding objects. More...
 
class  IdentityTensor
 Create an identity Tensor from the input file. More...
 
class  ImplicitUpdate
 
class  IncrementToRate
 
class  InputParameter
 A parameter that is defined by an input variable. More...
 
class  Interpolation
 The base class for interpolated variable. More...
 
class  IsotropicElasticityConverter
 Converter for linearized elastic constants assuming isotropic symmetry. More...
 
class  IsotropicElasticityTensor
 Define an isotropoic elasticity tensor in various ways. More...
 
class  IsotropicHardening
 
class  IsotropicHardeningStaticRecovery
 
class  IsotropicMandelStress
 
class  KinematicHardening
 
class  KinematicHardeningStaticRecovery
 
class  KocksMeckingActivationEnergy
 
class  KocksMeckingFlowSwitch
 
class  KocksMeckingFlowViscosity
 A scalar-valued parameter defined by (mu0 - D/(exp(T0/T)-1)) * exp(_C) More...
 
class  KocksMeckingIntercept
 A scalar-valued parameter defined by (C-B) / A. More...
 
class  KocksMeckingRateSensitivity
 A scalar-valued parameter defined by (mu0 - D/(exp(T0/T)-1)) * exp(_C) More...
 
class  KocksMeckingYieldStress
 A scalar-valued parameter defined by (mu0 - D/(exp(T0/T)-1)) * exp(_C) More...
 
class  LabeledAxis
 A labeled axis used to associate layout of a tensor with human-interpretable names. More...
 
class  LabeledAxisAccessor
 The accessor containing all the information needed to access an item in a LabeledAxis. More...
 
class  LDISolidMechanicsDriver
 Large deformation incremental solid mechanics driver. More...
 
class  LinearCombination
 
class  LinearInterpolation
 Linearly interpolate the parameter along a single axis. More...
 
class  LinearIsotropicElasticity
 
class  LinearIsotropicElasticJ2TrialStressUpdate
 Update the trial stress under the assumptions of J2 plasticity and isotropic linear elasticity. More...
 
class  LinearIsotropicHardening
 Simple linear map between equivalent strain and isotropic hardening. More...
 
class  LinearKinematicHardening
 Simple linear map between equivalent strain and hardening. More...
 
class  LinearSingleSlipHardeningRule
 Linear slip hardening of the type τ¯˙=θ|γ˙i|. More...
 
class  LinspacePrimitiveTensor
 Create a linspace PrimitiveTensor of type T from the input file. More...
 
class  LinspaceTensor
 Create a linspace Tensor from the input file. More...
 
class  LogspacePrimitiveTensor
 Create a logspace PrimitiveTensor of type T from the input file. More...
 
class  LogspaceTensor
 Create a logspace Tensor from the input file. More...
 
class  MandelStress
 
class  MatrixAssembler
 Helper to assemble a matrix of tensors into a single tensor and also to split a tensor into a map of map of tensors. More...
 
class  MillerIndex
 Represention of a crystal direction or plane a Miller Index. More...
 
class  MixedControlSetup
 
class  Model
 The base class for all constitutive models. More...
 
class  ModelDriver
 A general-purpose driver that does something with a model. More...
 
class  MultiEnumSelection
 Selection of multiple enum value from a list of candidates. More...
 
class  NEML2Object
 The base class of all "manufacturable" objects in the NEML2 library. More...
 
class  NEMLException
 
class  Newton
 The nonlinear solver solves a nonlinear system of equations. More...
 
class  NewtonWithLineSearch
 The nonlinear solver solves a nonlinear system of equations. More...
 
class  NewtonWithTrustRegion
 The nonlinear solver solves a nonlinear system of equations. More...
 
struct  NonlinearParameter
 Nonlinear parameter. More...
 
class  NonlinearSolver
 The nonlinear solver solves a nonlinear system of equations. More...
 
class  NonlinearSystem
 Definition of a nonlinear system of equations. More...
 
class  Normality
 
class  OlevskySinteringStress
 
class  OnesPrimitiveTensor
 Create a ones PrimitiveTensor of type T from the input file. More...
 
class  OnesTensor
 Create a ones Tensor from the input file. More...
 
class  Option
 
class  OptionBase
 
class  OptionCollection
 A data structure that holds options of multiple objects. More...
 
class  OptionSet
 A custom map-like data structure. The keys are strings, and the values can be nonhomogeneously typed. More...
 
class  Orientation
 Create batch of rotations, with various methods. More...
 
class  OrientationRate
 Calculate the orientation rate from the crystal model kinetics. More...
 
class  ParameterStore
 Interface for object which can store parameters. More...
 
class  Parser
 A parser is responsible for parsing an input file into a collection of options which can be used by the Factory to manufacture corresponding objects. More...
 
class  ParserException
 
class  PerzynaPlasticFlowRate
 
class  PhaseTransformationEigenstrain
 Define the phase transformation eigenstrain. More...
 
class  PlasticDeformationRate
 Plastic deformation rate with the default kinetics. More...
 
class  PlasticFlowRate
 
class  PlasticVorticity
 Calculate the plastic vorticity with the default crystal kinetics. More...
 
class  PowerLawIsotropicHardeningStaticRecovery
 
class  PowerLawKinematicHardeningStaticRecovery
 
class  PowerLawSlipRule
 Power law slip rate of the form γ˙i=γ˙0|τiτh,i|n1τiτh,i. More...
 
class  PrimitiveTensor
 PrimitiveTensor inherits from TensorBase and additionally templates on the base shape. More...
 
class  PrimitiveTensorFromTorchScript
 
class  ProductGeometry
 
class  ProjectileAcceleration
 
class  PyrolysisConversionAmount
 Calculate the pyrolysis conversion amount. More...
 
class  PyrolysisKinetics
 Define the governing pyrolysis kinetics models. More...
 
class  Quaternion
 A batched quaternion. More...
 
class  R2
 Second order tensor without symmetry. More...
 
class  R2Base
 Base class for second order tensor. More...
 
class  R2toSR2
 Get the symmetric part of a full rank two tensor. More...
 
class  R2toWR2
 Get the skew symmetric part of a full rank two tensor. More...
 
class  R3
 Third order tensor without symmetry. More...
 
class  R4
 Fourth order tensor without symmetry. More...
 
class  R5
 Fifth order tensor without symmetry. More...
 
class  R8
 The (logical) full eighth order tensor. More...
 
class  RateIndependentPlasticFlowConstraint
 
class  ReactionMechanism
 Define the mechanism reaction function. More...
 
class  Registry
 
class  ResolvedShear
 Calculate the resolved shears. More...
 
class  Rot
 Rotation stored as modified Rodrigues parameters. More...
 
class  RotationMatrix
 Convert a Rodrigues vector (Rot) to a second order tensor (R2). More...
 
class  Scalar
 Scalar. More...
 
class  ScalarVariableMultiplication
 Define the multiplication between arbitrary number of state variables. More...
 
class  SDTSolidMechanicsDriver
 Small deformation total solid mechanics driver. More...
 
class  Settings
 
class  SetupException
 
class  SFFR4
 The fourth order tensor with minor symmetry in the 1st and 2nd dimensions. More...
 
class  SFR3
 The third order tensor with symmetry in the first two dimensions. More...
 
class  SFR4
 The fourth order tensor with symmetry in the first two dimensions. More...
 
class  SimpleMPIScheduler
 A simple MPI scheduler. More...
 
class  SimpleScheduler
 A very simple scheduler. More...
 
class  SingleSlipHardeningRule
 Any slip rule where all systems share the same strength. More...
 
class  SingleSlipStrengthMap
 A map between the internal variables and the slip strength, for the case where all systems share the same strength. More...
 
class  SliceGenerator
 
class  SlipRule
 Parent class of slip rules, mapping from resolved shear and internal state to slip rates. More...
 
class  SlipStrengthMap
 Parent class of maps between internal variables and the slip system strengths. More...
 
class  SlopeSaturationVoceIsotropicHardening
 
class  SolidMechanicsDriver
 The transient driver specialized for solid mechanics problems. More...
 
class  Solver
 The solver solves a system of equations. More...
 
struct  SolvingNonlinearSystem
 
class  SR2
 The symmetric second order tensor. More...
 
class  SR2Invariant
 
class  SR2toR2
 Convert symmetric rank two tensor to full. More...
 
class  SSFR5
 The fifth order tensor with minor symmetry in the 1st and 2nd dimensions as well as in the 3rd and 4th dimensions. More...
 
class  SSR4
 The symmetric fourth order tensor, with symmetry in the first two dimensionss as well as in the last two dimensions. More...
 
class  SSSSR8
 The logical eigth order tensor with minor symmetry in the 1st and 2nd dimensions, the 3rd and 4th dimensions, the 5th and 6th dimensions, and the 7th and 8th dimensions. More...
 
class  StaticHybridScheduler
 A scheduler for multiple devices with static priority management. More...
 
class  SumSlipRates
 A helper model to calculate the sum of the absolute value of the slip rates. More...
 
class  SWR4
 The symmetric fourth order tensor, with symmetry in the first two dimensionss and skew-symmetry in the second two. More...
 
class  SymmetryFromOrbifold
 Provide the correct symmetry operators for a given crystal class. More...
 
class  Tensor
 
class  TensorBase
 NEML2's enhanced tensor type. More...
 
struct  TensorCache
 
class  TensorFromTorchScript
 
class  TensorLoader
 
struct  TensorName
 The name of a tensor object that can be referenced in the input files. More...
 
struct  TensorTypeEnum
 
class  TensorValue
 Concrete definition of tensor value. More...
 
class  TensorValueBase
 The base class to allow us to set up a polymorphic container of Tensors. The concrete definitions will be templated on the actual tensor type. More...
 
class  ThermalEigenstrain
 
struct  TimedSection
 
struct  TraceableSize
 Traceable size. More...
 
struct  TraceableTensorShape
 Traceable tensor shape. More...
 
class  Transformable
 Mixin class for things that can be transformed by a symmetry operator. More...
 
class  TransientDriver
 The driver for a transient initial-value problem. More...
 
class  TrustRegionSubProblem
 
class  TwoStageThermalAnnealing
 
class  UserPrimitiveTensor
 Create raw tensor of type T from the input file. More...
 
class  UserTensor
 Create raw Tensor from the input file. More...
 
class  UserTensorBase
 
class  ValueMapLoader
 
class  Variable
 Concrete definition of a variable. More...
 
class  VariableBase
 Base class of variable. More...
 
class  VariableRate
 
class  VariableStore
 
class  Vec
 3-vector. More...
 
class  VecBase
 Base class 3-vector. More...
 
class  VectorAssembler
 Helper to assemble a vector of tensors into a single tensor and also to split a tensor into a map of tensors. More...
 
class  VoceIsotropicHardening
 
class  VoceSingleSlipHardeningRule
 Voce slip hardening when all slip systems share the same hardening value, τ¯˙=θ0(1τ¯τsat)|γ˙i|. More...
 
class  VolumeChangeEigenstrain
 Define the volume change eigenstrain. More...
 
class  WFR4
 The fourth order tensor with skew symmetry in the first two dimensions. More...
 
class  WorkDispatcher
 The work dispatcher who dispatches work to a worker and reduces the results. More...
 
class  WorkGenerator
 
class  WorkScheduler
 Scheduler for work dispatching. More...
 
class  WR2
 A skew-symmetric second order tensor, represented as an axial vector. More...
 
class  WR2ExplicitExponentialTimeIntegration
 Explicit exponential time integration for rotations. More...
 
class  WR2ImplicitExponentialTimeIntegration
 Implicit exponential time integration for rotations. More...
 
class  WSR4
 The symmetric fourth order tensor, with skew symmetry in the first two dimensionss and symmetry in the second two. More...
 
class  WWR4
 The symmetric fourth order tensor, with skew symmetry in the first two dimensions and last two dimensions. More...
 
class  YieldFunction
 
class  ZerosPrimitiveTensor
 Create a zeros PrimitiveTensor of type T from the input file. More...
 
class  ZerosTensor
 Create a zeros Tensor from the input file. More...
 

Typedefs

using ScalarBackwardEulerTimeIntegration = BackwardEulerTimeIntegration<Scalar>
 
using VecBackwardEulerTimeIntegration = BackwardEulerTimeIntegration<Vec>
 
using SR2BackwardEulerTimeIntegration = BackwardEulerTimeIntegration<SR2>
 
using ScalarForwardEulerTimeIntegration = ForwardEulerTimeIntegration<Scalar>
 
using VecForwardEulerTimeIntegration = ForwardEulerTimeIntegration<Vec>
 
using SR2ForwardEulerTimeIntegration = ForwardEulerTimeIntegration<SR2>
 
using ScalarIncrementToRate = IncrementToRate<Scalar>
 
using VecIncrementToRate = IncrementToRate<Vec>
 
using SR2IncrementToRate = IncrementToRate<SR2>
 
using R2IncrementToRate = IncrementToRate<R2>
 
using ScalarLinearCombination = LinearCombination<Scalar>
 
using VecLinearCombination = LinearCombination<Vec>
 
using SR2LinearCombination = LinearCombination<SR2>
 
using ScalarLinearInterpolation = LinearInterpolation<Scalar>
 
using VecLinearInterpolation = LinearInterpolation<Vec>
 
using SR2LinearInterpolation = LinearInterpolation<SR2>
 
using SR2CrystalMean = CrystalMean<SR2>
 
using ScalarTwoStageThermalAnnealing = TwoStageThermalAnnealing<Scalar>
 
using SR2TwoStageThermalAnnealing = TwoStageThermalAnnealing<SR2>
 
using ScalarVariableRate = VariableRate<Scalar>
 
using VecVariableRate = VariableRate<Vec>
 
using SR2VariableRate = VariableRate<SR2>
 
using VariableName = LabeledAxisAccessor
 
using SubaxisName = LabeledAxisAccessor
 
using BuildPtr = std::shared_ptr<NEML2Object> (*)(const OptionSet & options)
 
using ATensor = at::Tensor
 
template<typename T, unsigned N>
using SmallVector = c10::SmallVector<T, N>
 
template<typename T>
using ArrayRef = c10::ArrayRef<T>
 
using TensorOptions = c10::TensorOptions
 
using Dtype = c10::ScalarType
 
using DeviceIndex = c10::DeviceIndex
 
using Device = c10::Device
 
using Real = double
 
using Size = int64_t
 
using Integer = int64_t
 
using TensorShape = c10::SmallVector<Size, 8>
 
using TensorShapeRef = c10::ArrayRef<Size>
 
using ValueMap = std::map<LabeledAxisAccessor, Tensor>
 
using DerivMap = std::map<LabeledAxisAccessor, ValueMap>
 
using SecDerivMap = std::map<LabeledAxisAccessor, DerivMap>
 
using TensorDataContainer = torch::detail::TensorDataContainer
 

Enumerations

enum class  FType : int8_t {
  NONE = 0 , INPUT = 1 << 0 , OUTPUT = 1 << 1 , PARAMETER = 1 << 2 ,
  BUFFER = 1 << 3
}
 Role in a function definition. More...
 
enum class  ElasticConstant : std::uint8_t {
  INVALID = 0 , LAME_LAMBDA = 1 , BULK_MODULUS = 2 , SHEAR_MODULUS = 3 ,
  YOUNGS_MODULUS = 4 , POISSONS_RATIO = 5 , P_WAVE_MODULUS = 6 , CUBIC_C1 = 7 ,
  CUBIC_C2 = 8 , CUBIC_C3 = 9
}
 
enum class  TensorType : int8_t { FOR_ALL_TENSORBASE_COMMA =(_tensor_type_enum) , kUknown }
 

Functions

DiagnosticStatecurrent_diagnostic_state ()
 Get the current diagnostic state.
 
std::vector< Diagnosis > & current_diagnoses ()
 Get the current diagnoses.
 
std::vector< Diagnosisdiagnose (const DiagnosticsInterface &)
 A helper function to diagnose common setup errors.
 
std::ostream & operator<< (std::ostream &os, const EnumSelection &es)
 
std::stringstream & operator>> (std::stringstream &ss, EnumSelection &es)
 
void load_input (const std::filesystem::path &path, const std::string &additional_input="")
 A convenient function to parse all options from an input file.
 
void reload_input (const std::filesystem::path &path, const std::string &additional_input="")
 Similar to neml2::load_input, but additionally clear the Factory before loading the options, therefore all previously loaded models become dangling.
 
std::map< std::string, std::map< std::string, unsigned long > > & timed_sections ()
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE_ADD_VARIABLE)
 
std::ostream & operator<< (std::ostream &os, const LabeledAxis &axis)
 
bool operator== (const LabeledAxis &a, const LabeledAxis &b)
 
bool operator!= (const LabeledAxis &a, const LabeledAxis &b)
 
std::vector< std::string > reserved_subaxis_names ()
 
 LabeledAxisAccessor::operator std::vector< std::string > () const
 
bool operator!= (const LabeledAxisAccessor &a, const LabeledAxisAccessor &b)
 Compare for equality between two LabeledAxisAccessor.
 
bool operator== (const LabeledAxisAccessor &a, const LabeledAxisAccessor &b)
 Compare for equality between two LabeledAxisAccessor.
 
bool operator< (const LabeledAxisAccessor &a, const LabeledAxisAccessor &b)
 The (strict) smaller than operator is created so as to use LabeledAxisAccessor in sorted data structures.
 
std::ostream & operator<< (std::ostream &os, const LabeledAxisAccessor &accessor)
 Serialize the accessor into a string. The format is simply the concatenation of all the item names delimited by "/".
 
std::ostream & operator<< (std::ostream &os, const MultiEnumSelection &es)
 
std::stringstream & operator>> (std::stringstream &ss, MultiEnumSelection &es)
 
 FOR_ALL_TENSORBASE (INSTANTIATE_TENSORNAME)
 
std::ostream & operator<< (std::ostream &os, const OptionBase &opt)
 
std::ostream & operator<< (std::ostream &os, const OptionCollection &p)
 
bool options_compatible (const OptionSet &opts, const OptionSet &additional_opts)
 
std::ostream & operator<< (std::ostream &os, const OptionSet &p)
 
 FOR_ALL_TENSORBASE (INSTANTIATE)
 
DerivMap derivmap_cat_reduce (std::vector< DerivMap > &&results, Size batch_dim)
 Concatenate the tensors in the DerivMap along the batch dimension.
 
DerivMap derivmap_move_device (DerivMap &&x, Device device)
 Move all tensors in a DerivMap to a device.
 
DerivMap derivmap_no_operation (DerivMap &&x)
 No operation.
 
 register_NEML2_object (SimpleMPIScheduler)
 
 register_NEML2_object (SimpleScheduler)
 
 register_NEML2_object (StaticHybridScheduler)
 
ValueMap valuemap_cat_reduce (std::vector< ValueMap > &&results, Size batch_dim)
 Concatenate the tensors in the ValueMap along the batch dimension.
 
ValueMap valuemap_move_device (ValueMap &&x, Device device)
 Move all tensors in a ValueMap to a device.
 
ValueMap valuemap_no_operation (ValueMap &&x)
 No operation.
 
std::size_t broadcast_batch_size (const ValueMap &value_map, Size batch_dim)
 
Driverget_driver (const std::string &dname)
 A convenient function to manufacture a neml2::Driver.
 
 register_NEML2_object (LDISolidMechanicsDriver)
 
 register_NEML2_object (SDTSolidMechanicsDriver)
 
 register_NEML2_object (TransientDriver)
 
template<typename T>
void set_ic (ValueMap &storage, const OptionSet &options, const std::string &name_opt, const std::string &value_opt, const Device &device)
 
template<typename T>
void get_force (std::vector< VariableName > &names, std::vector< Tensor > &values, const OptionSet &options, const std::string &name_opt, const std::string &value_opt, const Device &device)
 
std::ostream & operator<< (std::ostream &os, const TraceableSize &s)
 Streaming operator.
 
void neml_assert_tracing ()
 Assert that we are currently tracing.
 
void neml_assert_not_tracing ()
 Assert that we are currently NOT tracing.
 
void neml_assert_tracing_dbg ()
 Assert that we are currently tracing (only effective in debug mode)
 
void neml_assert_not_tracing_dbg ()
 Assert that we are currently NOT tracing (only effective in debug mode)
 
bool & require_double_precision ()
 Require double precision for all computations.
 
std::ostream & operator<< (std::ostream &os, FType f)
 
 register_NEML2_object (ArrheniusParameter)
 
 register_NEML2_object (ScalarBackwardEulerTimeIntegration)
 
 register_NEML2_object (VecBackwardEulerTimeIntegration)
 
 register_NEML2_object (SR2BackwardEulerTimeIntegration)
 
 FOR_ALL_TENSORBASE (BUFFERSTORE_INTANTIATE_TENSORBASE)
 
 register_NEML2_object (ComposedModel)
 
 FOR_ALL_PRIMITIVETENSOR (REGISTER_CONSTANTPARAMETER)
 
 FOR_ALL_PRIMITIVETENSOR (REGISTER_COPYVARIABLE)
 
 register_NEML2_object (FischerBurmeister)
 
 register_NEML2_object (ScalarForwardEulerTimeIntegration)
 
 register_NEML2_object (VecForwardEulerTimeIntegration)
 
 register_NEML2_object (SR2ForwardEulerTimeIntegration)
 
 register_NEML2_object (HermiteSmoothStep)
 
 register_NEML2_object (ImplicitUpdate)
 
 register_NEML2_object (ScalarIncrementToRate)
 
 register_NEML2_object (VecIncrementToRate)
 
 register_NEML2_object (SR2IncrementToRate)
 
 register_NEML2_object (R2IncrementToRate)
 
 FOR_ALL_PRIMITIVETENSOR (REGISTER)
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE)
 
 register_NEML2_object (ScalarLinearCombination)
 
 register_NEML2_object (VecLinearCombination)
 
 register_NEML2_object (SR2LinearCombination)
 
 register_NEML2_object (ScalarLinearInterpolation)
 
 register_NEML2_object (VecLinearInterpolation)
 
 register_NEML2_object (SR2LinearInterpolation)
 
Modelget_model (const std::string &mname)
 A convenient function to manufacture a neml2::Model.
 
Modelload_model (const std::filesystem::path &path, const std::string &mname)
 A convenient function to load an input file and get a model.
 
Modelreload_model (const std::filesystem::path &path, const std::string &mname)
 Similar to neml2::load_model, but additionally clear the Factory before loading the model, therefore all previously loaded models become dangling.
 
void check_precision ()
 Check the current default precision and warn if it's not double precision.
 
std::ostream & operator<< (std::ostream &os, const Model &model)
 
template<typename T>
const T & resolve_tensor_name (const TensorName< T > &tn, Model *caller, const std::string &pname)
 
 FOR_ALL_TENSORBASE (PARAMETERSTORE_INTANTIATE_TENSORBASE)
 
 FOR_ALL_PRIMITIVETENSOR (PARAMETERSTORE_INTANTIATE_PRIMITIVETENSOR)
 
 register_NEML2_object (AvramiErofeevNucleation)
 
 register_NEML2_object (ChemicalReactionMechanism)
 
 register_NEML2_object (PyrolysisConversionAmount)
 
 register_NEML2_object (PyrolysisKinetics)
 
 register_NEML2_object (R2toSR2)
 
 register_NEML2_object (R2toWR2)
 
 register_NEML2_object (DiffusionLimitedReaction)
 
 register_NEML2_object (ProductGeometry)
 
 register_NEML2_object (RotationMatrix)
 
 register_NEML2_object (ScalarVariableMultiplication)
 
 register_NEML2_object (AssociativeIsotropicPlasticHardening)
 
 register_NEML2_object (AssociativeJ2FlowDirection)
 
 register_NEML2_object (AssociativeKinematicPlasticHardening)
 
 register_NEML2_object (AssociativePlasticFlow)
 
 register_NEML2_object (ChabochePlasticHardening)
 
 register_NEML2_object (SR2CrystalMean)
 
 register_NEML2_object (ElasticStrainRate)
 
SR2 skew_and_sym_to_sym (const SR2 &e, const WR2 &w)
 
SSR4 d_skew_and_sym_to_sym_d_sym (const WR2 &w)
 
SWR4 d_skew_and_sym_to_sym_d_skew (const SR2 &e)
 
 register_NEML2_object (FixOrientation)
 
 register_NEML2_object (LinearSingleSlipHardeningRule)
 
 register_NEML2_object (OrientationRate)
 
WR2 multiply_and_make_skew (const SR2 &a, const SR2 &b)
 
WSR4 d_multiply_and_make_skew_d_first (const SR2 &b)
 
WSR4 d_multiply_and_make_skew_d_second (const SR2 &a)
 
 register_NEML2_object (PlasticDeformationRate)
 
 register_NEML2_object (PlasticVorticity)
 
 register_NEML2_object (PowerLawSlipRule)
 
 register_NEML2_object (ResolvedShear)
 
 register_NEML2_object (SingleSlipStrengthMap)
 
 register_NEML2_object (SumSlipRates)
 
 register_NEML2_object (VoceSingleSlipHardeningRule)
 
 register_NEML2_object (CubicElasticityTensor)
 
std::string name (ElasticConstant p)
 
 register_NEML2_object (GeneralElasticity)
 
 register_NEML2_object (IsotropicElasticityTensor)
 
 register_NEML2_object (LinearIsotropicElasticity)
 
 register_NEML2_object (FredrickArmstrongPlasticHardening)
 
 register_NEML2_object (GTNYieldFunction)
 
 register_NEML2_object (GursonCavitation)
 
 register_NEML2_object (IsotropicMandelStress)
 
 register_NEML2_object (KocksMeckingActivationEnergy)
 
 register_NEML2_object (KocksMeckingFlowSwitch)
 
 register_NEML2_object (KocksMeckingFlowViscosity)
 
 register_NEML2_object (KocksMeckingIntercept)
 
 register_NEML2_object (KocksMeckingRateSensitivity)
 
 register_NEML2_object (KocksMeckingYieldStress)
 
 register_NEML2_object (LinearIsotropicElasticJ2TrialStressUpdate)
 
 register_NEML2_object (LinearIsotropicHardening)
 
 register_NEML2_object (LinearKinematicHardening)
 
 register_NEML2_object (MixedControlSetup)
 
 register_NEML2_object (Normality)
 
 register_NEML2_object (OlevskySinteringStress)
 
 register_NEML2_object (PerzynaPlasticFlowRate)
 
 register_NEML2_object (PhaseTransformationEigenstrain)
 
 register_NEML2_object (PowerLawIsotropicHardeningStaticRecovery)
 
 register_NEML2_object (PowerLawKinematicHardeningStaticRecovery)
 
 register_NEML2_object (RateIndependentPlasticFlowConstraint)
 
 register_NEML2_object (SlopeSaturationVoceIsotropicHardening)
 
 register_NEML2_object (ThermalEigenstrain)
 
 register_NEML2_object (ScalarTwoStageThermalAnnealing)
 
 register_NEML2_object (SR2TwoStageThermalAnnealing)
 
 register_NEML2_object (VoceIsotropicHardening)
 
 register_NEML2_object (VolumeChangeEigenstrain)
 
 register_NEML2_object (YieldFunction)
 
 register_NEML2_object (SR2Invariant)
 
 register_NEML2_object (SR2toR2)
 
void assign_or_add (Tensor &dest, const Tensor &val)
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE_VARIABLE)
 
 register_NEML2_object (ScalarVariableRate)
 
 register_NEML2_object (VecVariableRate)
 
 register_NEML2_object (SR2VariableRate)
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE_DECLARE_INPUT_VARIABLE)
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE_DECLARE_OUTPUT_VARIABLE)
 
 FOR_ALL_PRIMITIVETENSOR (INSTANTIATE_CREATE_VARIABLE)
 
 register_NEML2_object (WR2ExplicitExponentialTimeIntegration)
 
 register_NEML2_object (WR2ImplicitExponentialTimeIntegration)
 
 register_NEML2_object (Newton)
 
 register_NEML2_object (NewtonWithLineSearch)
 
 register_NEML2_object (NewtonWithTrustRegion)
 
bool & currently_solving_nonlinear_system ()
 
 FOR_ALL_TENSORBASE (DEFINE_ABS)
 
 FOR_ALL_TENSORBASE (DEFINE_ARCCOS)
 
 FOR_ALL_TENSORBASE (DEFINE_ARCSIN)
 
 FOR_ALL_TENSORBASE (DEFINE_ARCTAN)
 
Tensor bmm (const Tensor &a, const Tensor &b)
 Batched matrix-matrix product.
 
Tensor bmv (const Tensor &a, const Tensor &v)
 Batched matrix-vector product.
 
Scalar bvv (const Tensor &a, const Tensor &b)
 Batched vector-vector (dot) product.
 
 FOR_ALL_TENSORBASE (DEFINE_CAT)
 
Tensor base_cat (const std::vector< Tensor > &tensors, Size d)
 
 FOR_ALL_TENSORBASE (DEFINE_CBRT)
 
 FOR_ALL_TENSORBASE (DEFINE_CLAMP)
 
 FOR_ALL_TENSORBASE (DEFINE_COS)
 
 FOR_ALL_TENSORBASE (DEFINE_COSH)
 
 FOR_ALL_TENSORBASE (DEFINE_DEG2RAD)
 
 FOR_ALL_TENSORBASE (DEFINE_BATCH_DIAG_EMDED)
 
Tensor base_diag_embed (const Tensor &a, Size offset, Size d1, Size d2)
 
 FOR_ALL_TENSORBASE (DEFINE_DIFF)
 
 FOR_ALL_TENSORBASE (DEFINE_EXP)
 
 FOR_ALL_TENSORBASE (DEFINE_FMOD)
 
 FOR_ALL_TENSORBASE (DEFINE_GCD)
 
 FOR_ALL_TENSORBASE (DEFINE_HEAVISIDE)
 
std::vector< Tensorjacrev (const Tensor &y, const std::vector< Tensor > &xs, bool retain_graph=false, bool create_graph=false, bool allow_unused=false)
 Use automatic differentiation (AD) to calculate the derivatives of a Tensor w.r.t. another Tensor.
 
Tensor jacrev (const Tensor &y, const Tensor &x, bool retain_graph=false, bool create_graph=false, bool allow_unused=false)
 Similar to the other jacrev, but for a single input.
 
 FOR_ALL_TENSORBASE (DEFINE_LOG)
 
 FOR_ALL_TENSORBASE (DEFINE_LOG10)
 
 FOR_ALL_TENSORBASE (DEFINE_MACAULAY)
 
 FOR_ALL_TENSORBASE (DEFINE_BATCH_MEAN)
 
Tensor base_mean (const Tensor &a, Size d)
 
 FOR_ALL_TENSORBASE (DEFINE_MINIMUM)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_ADD_SELF)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_ADD_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_ADD_SYM_REAL)
 
Tensor operator+ (const Tensor &a, const Tensor &b)
 
Tensor operator+ (const Tensor &a, const Scalar &b)
 
Tensor operator+ (const Scalar &a, const Tensor &b)
 
Tensor operator+ (const Tensor &a, const Real &b)
 
Tensor operator+ (const Real &a, const Tensor &b)
 
Scalar operator+ (const Scalar &a, const Scalar &b)
 
Scalar operator+ (const Scalar &a, const Real &b)
 
Scalar operator+ (const Real &a, const Scalar &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_SUB_SELF)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_SUB_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_SUB_SYM_REAL)
 
Tensor operator- (const Tensor &a, const Tensor &b)
 
Tensor operator- (const Tensor &a, const Scalar &b)
 
Tensor operator- (const Scalar &a, const Tensor &b)
 
Tensor operator- (const Tensor &a, const Real &b)
 
Tensor operator- (const Real &a, const Tensor &b)
 
Scalar operator- (const Scalar &a, const Scalar &b)
 
Scalar operator- (const Scalar &a, const Real &b)
 
Scalar operator- (const Real &a, const Scalar &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_MUL_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_MUL_SYM_REAL)
 
Tensor operator* (const Tensor &a, const Tensor &b)
 
Tensor operator* (const Tensor &a, const Scalar &b)
 
Tensor operator* (const Scalar &a, const Tensor &b)
 
Tensor operator* (const Tensor &a, const Real &b)
 
Tensor operator* (const Real &a, const Tensor &b)
 
Scalar operator* (const Scalar &a, const Scalar &b)
 
Scalar operator* (const Scalar &a, const Real &b)
 
Scalar operator* (const Real &a, const Scalar &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_DIV_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_DIV_SYM_REAL)
 
Tensor operator/ (const Tensor &a, const Tensor &b)
 
Tensor operator/ (const Tensor &a, const Scalar &b)
 
Tensor operator/ (const Scalar &a, const Tensor &b)
 
Tensor operator/ (const Tensor &a, const Real &b)
 
Tensor operator/ (const Real &a, const Tensor &b)
 
Scalar operator/ (const Scalar &a, const Scalar &b)
 
Scalar operator/ (const Scalar &a, const Real &b)
 
Scalar operator/ (const Real &a, const Scalar &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_ADD_EQ)
 
Tensoroperator+= (Tensor &a, const Real &b)
 
Scalaroperator+= (Scalar &a, const Real &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_SUB_EQ)
 
Tensoroperator-= (Tensor &a, const Real &b)
 
Scalaroperator-= (Scalar &a, const Real &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_MUL_EQ)
 
Tensoroperator*= (Tensor &a, const Real &b)
 
Scalaroperator*= (Scalar &a, const Real &b)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DEFINE_DIV_EQ)
 
Tensoroperator/= (Tensor &a, const Real &b)
 
Scalaroperator/= (Scalar &a, const Real &b)
 
 FOR_ALL_NONSCALAR_TENSORBASE (DEFINE_POW)
 
Scalar pow (const Scalar &a, const Real &n)
 
Scalar pow (const Scalar &a, const Scalar &n)
 
Scalar pow (const Real &a, const Scalar &n)
 
Tensor pow (const Tensor &a, const Tensor &n)
 Element-wise pow.
 
Tensor pow (const Real &a, const Tensor &n)
 Element-wise pow.
 
 FOR_ALL_TENSORBASE (DEFINE_SIGN)
 
 FOR_ALL_TENSORBASE (DEFINE_SIN)
 
 FOR_ALL_TENSORBASE (DEFINE_SINH)
 
 FOR_ALL_TENSORBASE (DEFINE_SQRT)
 
 FOR_ALL_TENSORBASE (DEFINE_BATCH_STACK)
 
Tensor base_stack (const std::vector< Tensor > &tensors, Size d)
 
 FOR_ALL_TENSORBASE (DEFINE_BATCH_SUM)
 
Tensor base_sum (const Tensor &a, Size d)
 
 FOR_ALL_TENSORBASE (DEFINE_TAN)
 
 FOR_ALL_TENSORBASE (DEFINE_TANH)
 
 FOR_ALL_TENSORBASE (DEFINE_WHERE)
 
const Tensorfull_to_mandel_map (const TensorOptions &opt)
 
const Tensormandel_to_full_map (const TensorOptions &opt)
 
const Tensorfull_to_mandel_factor (const TensorOptions &opt)
 
const Tensormandel_to_full_factor (const TensorOptions &opt)
 
const Tensorfull_to_skew_map (const TensorOptions &opt)
 
const Tensorskew_to_full_map (const TensorOptions &opt)
 
const Tensorfull_to_skew_factor (const TensorOptions &opt)
 
const Tensorskew_to_full_factor (const TensorOptions &opt)
 
Tensor full_to_reduced (const Tensor &full, const Tensor &rmap, const Tensor &rfactors, Size dim=0)
 Generic function to reduce two axes to one with some map.
 
Tensor reduced_to_full (const Tensor &reduced, const Tensor &rmap, const Tensor &rfactors, Size dim=0)
 Convert a Tensor from reduced notation to full notation.
 
Tensor full_to_mandel (const Tensor &full, Size dim=0)
 Convert a Tensor from full notation to Mandel notation.
 
Tensor mandel_to_full (const Tensor &mandel, Size dim=0)
 Convert a Tensor from Mandel notation to full notation.
 
Tensor full_to_skew (const Tensor &full, Size dim=0)
 Convert a Tensor from full notation to skew vector notation.
 
Tensor skew_to_full (const Tensor &skew, Size dim=0)
 Convert a Tensor from skew vector notation to full notation.
 
template<class Derived1, class Derived2, typename, typename>
Vec operator* (const Derived1 &A, const Derived2 &b)
 matrix-vector product
 
template<class Derived1, class Derived2, typename, typename>
R2 operator* (const Derived1 &A, const Derived2 &B)
 matrix-matrix product
 
template Vec operator* (const R2 &A, const Vec &b)
 
template R2 operator* (const R2 &A, const R2 &B)
 
Rot operator* (const Rot &r1, const Rot &r2)
 Composition of rotations r3 = r1 * r2 (r2 first, then r1)
 
SR2 operator* (const SSR4 &a, const SR2 &b)
 
SR2 operator* (const SR2 &a, const SSR4 &b)
 
SSR4 operator* (const SSR4 &a, const SSR4 &b)
 
 FOR_ALL_TENSORBASE (INSTANTIATE_TENSORBASE)
 
std::ostream & operator<< (std::ostream &os, const TensorType &t)
 
 FOR_ALL_TENSORBASE (INSTANTIATE_TENSORVALUE)
 
R2 transform_from_quaternion (const Quaternion &q)
 Construct from quaternions, useful for comparison to old NEML.
 
R2 identity_transform (const TensorOptions &options=default_tensor_options())
 The identity transformation, i.e.e the Rank2 identity tensor.
 
R2 proper_rotation_transform (const Rot &rot)
 A proper rotation, here provided by a Rot object.
 
R2 improper_rotation_transform (const Rot &rot)
 An improper rotation (rotation + reflection), here provided by a rot object giving the rotation and reflection axis.
 
R2 reflection_transform (const Vec &v)
 A reflection, defined by the reflection plane.
 
R2 inversion_transform (const TensorOptions &options=default_tensor_options())
 An inversion center.
 
 FOR_ALL_VECBASE (VECBASE_INSTANTIATE)
 
 FOR_ALL_PRIMITIVETENSOR (EMPTYPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (EmptyTensor)
 
 register_NEML2_object (FillMillerIndex)
 
 register_NEML2_object (FillR2)
 
 register_NEML2_object (FillRot)
 
 register_NEML2_object (FillSR2)
 
 register_NEML2_object (FillWR2)
 
 FOR_ALL_PRIMITIVETENSOR (FULLPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (FullTensor)
 
 register_NEML2_object (IdentityTensor)
 
 FOR_ALL_PRIMITIVETENSOR (LINSPACEPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (LinspaceTensor)
 
 FOR_ALL_PRIMITIVETENSOR (LOGSPACEPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (LogspaceTensor)
 
 FOR_ALL_PRIMITIVETENSOR (ONESPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (OnesTensor)
 
 register_NEML2_object (Orientation)
 
 FOR_ALL_PRIMITIVETENSOR (REGISTER_PRIMITIVETENSORFROMTORCHSCRIPT)
 
 register_NEML2_object (SymmetryFromOrbifold)
 
 register_NEML2_object (TensorFromTorchScript)
 
 FOR_ALL_PRIMITIVETENSOR (USERPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object_alias (UserTensor, "Tensor")
 
 FOR_ALL_PRIMITIVETENSOR (ZEROSPRIMITIVETENSOR_REGISTER)
 
 register_NEML2_object (ZerosTensor)
 
template<typename... Args>
void diagnostic_assert (bool, Args &&...)
 Helper assertion function for diagnostics.
 
template<typename... Args>
void diagnostic_assert (bool assertion, Args &&... args)
 
template<typename T>
std::stringstream & operator>> (std::stringstream &ss, TensorName< T > &t)
 Stream into a TensorName (used by Parsers to extract input options)
 
template<typename T>
std::ostream & operator<< (std::ostream &os, const TensorName< T > &t)
 Stream out a TensorName (used for printing OptionSet)
 
template<typename... Args>
void neml_assert (bool assertion, Args &&... args)
 
template<typename... Args>
void neml_assert_dbg (bool assertion, Args &&... args)
 
template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator+ (const T1 &a, const T2 &b)
 
template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator- (const T1 &a, const T2 &b)
 
template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator* (const T1 &a, const T2 &b)
 
template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator/ (const T1 &a, const T2 &b)
 
template<class... T>
void neml_assert_broadcastable (const T &...)
 A helper function to assert that all tensors are broadcastable.
 
template<class... T>
void neml_assert_broadcastable_dbg (const T &...)
 A helper function to assert (in Debug mode) that all tensors are broadcastable.
 
template<class... T>
void neml_assert_batch_broadcastable (const T &...)
 A helper function to assert that all tensors are batch-broadcastable.
 
template<class... T>
void neml_assert_batch_broadcastable_dbg (const T &...)
 A helper function to assert that (in Debug mode) all tensors are batch-broadcastable.
 
template<class... T>
void neml_assert_base_broadcastable (const T &...)
 A helper function to assert that all tensors are base-broadcastable.
 
template<class... T>
void neml_assert_base_broadcastable_dbg (const T &...)
 A helper function to assert that (in Debug mode) all tensors are base-broadcastable.
 
template<class... T>
void neml_assert_broadcastable (const T &... tensors)
 
template<class... T>
void neml_assert_broadcastable_dbg (const T &... tensors)
 
template<class... T>
void neml_assert_batch_broadcastable (const T &... tensors)
 
template<class... T>
void neml_assert_batch_broadcastable_dbg (const T &... tensors)
 
template<class... T>
void neml_assert_base_broadcastable (const T &... tensors)
 
template<class... T>
void neml_assert_base_broadcastable_dbg (const T &... tensors)
 
 FOR_ALL_TENSORBASE (DECLARE_ABS)
 
 FOR_ALL_TENSORBASE (DECLARE_ACOS)
 
 FOR_ALL_TENSORBASE (DECLARE_ASIN)
 
 FOR_ALL_TENSORBASE (DECLARE_ATAN)
 
 FOR_ALL_TENSORBASE (DECLARE_BATCH_CAT)
 
 FOR_ALL_TENSORBASE (DECLARE_CBRT)
 
 FOR_ALL_TENSORBASE (DECLARE_CLAMP)
 
 FOR_ALL_TENSORBASE (DECLARE_COS)
 
 FOR_ALL_TENSORBASE (DECLARE_COSH)
 
 FOR_ALL_TENSORBASE (DECLARE_DEG2RAD)
 
 FOR_ALL_TENSORBASE (DECLARE_BATCH_DIAG_EMBED)
 
 FOR_ALL_TENSORBASE (DECLARE_DIFF)
 
 FOR_ALL_TENSORBASE (DECLARE_EXP)
 
 FOR_ALL_TENSORBASE (DECLARE_FMOD)
 
 FOR_ALL_TENSORBASE (DECLARE_GCD)
 
 FOR_ALL_TENSORBASE (DECLARE_HEAVISIDE)
 
 FOR_ALL_TENSORBASE (DECLARE_LOG)
 
 FOR_ALL_TENSORBASE (DECLARE_LOG10)
 
 FOR_ALL_TENSORBASE (DECLARE_MACAULAY)
 
 FOR_ALL_TENSORBASE (DECLARE_BATCH_MEAN)
 
 FOR_ALL_TENSORBASE (DECLARE_MINIMUM)
 
 FOR_ALL_TENSORBASE (FORWARD_DECLARATION)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_ADD_SELF)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_ADD_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_ADD_SYM_REAL)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_SUB_SELF)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_SUB_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_SUB_SYM_REAL)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_MUL_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_MUL_SYM_REAL)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_DIV_SYM_SCALAR)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_DIV_SYM_REAL)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_ADD_EQ)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_SUB_EQ)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_MUL_EQ)
 
 FOR_ALL_NONSCALAR_PRIMITIVETENSOR (DECLARE_DIV_EQ)
 
 FOR_ALL_TENSORBASE (DECLARE_POW)
 
 FOR_ALL_TENSORBASE (DECLARE_SIGN)
 
 FOR_ALL_TENSORBASE (DECLARE_SIN)
 
 FOR_ALL_TENSORBASE (DECLARE_SINH)
 
 FOR_ALL_TENSORBASE (DECLARE_SQRT)
 
 FOR_ALL_TENSORBASE (DECLARE_BATCH_STACK)
 
 FOR_ALL_TENSORBASE (DECLARE_BATCH_SUM)
 
 FOR_ALL_TENSORBASE (DECLARE_TAN)
 
 FOR_ALL_TENSORBASE (DECLARE_TANH)
 
 FOR_ALL_TENSORBASE (DECLARE_WHERE)
 
template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_a (F &&f, const T1 &a, const T2 &b)
 outer product on lists, where the first input is a list tensor
 
template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_b (F &&f, const T1 &a, const T2 &b)
 outer product on lists, where the second input is a list tensor
 
template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_ab (F &&f, const T1 &a, const T2 &b)
 outer product on lists where both inputs are list tensors
 
constexpr Real mandel_factor (Size i)
 
 FOR_ALL_TENSORBASE (SPECIALIZE_TENSORTYPEENUM)
 
 FOR_ALL_TENSORBASE (DECLARE_TENSOR)
 
 register_NEML2_object (ProjectileAcceleration)
 
bool operator== (const TraceableSize &lhs, const TraceableSize &rhs)
 
bool operator!= (const TraceableSize &lhs, const TraceableSize &rhs)
 
bool operator== (const TraceableTensorShape &lhs, const TraceableTensorShape &rhs)
 
bool operator!= (const TraceableTensorShape &lhs, const TraceableTensorShape &rhs)
 
RAII style default tensor options

The factory methods like at::arange, at::ones, at::zeros, at::rand etc. accept a common argument to configure the properties of the tensor being created. We predefine a default tensor configuration in NEML2. This default configuration is consistently used throughout NEML2.

See https://pytorch.org/cppdocs/notes/tensor_creation.html#configuring-properties-of-the-tensor for more details.

void set_default_dtype (Dtype dtype)
 
Dtype get_default_dtype ()
 Get default dtype.
 
TensorOptions default_tensor_options ()
 Default floating point tensor options.
 
TensorOptions default_integer_tensor_options ()
 Default integral tensor options.
 
Dtypedefault_integer_dtype ()
 Default integral type.
 
Default tolerances
Realmachine_precision ()
 
Realtolerance ()
 The tolerance used in various algorithms.
 
Realtighter_tolerance ()
 A tighter tolerance used in various algorithms.
 
Default name separators
std::string & buffer_name_separator ()
 
std::string & parameter_name_separator ()
 Default nested parameter name separator.
 

Variables

const std::string STATE = "state"
 
const std::string OLD_STATE = "old_state"
 
const std::string FORCES = "forces"
 
const std::string OLD_FORCES = "old_forces"
 
const std::string RESIDUAL = "residual"
 
const std::string PARAMETERS = "parameters"
 
constexpr auto kInt8 = c10::kChar
 Fixed width dtypes (mirroring the definition in <torch/csrc/api/include/torch/types.h>)
 
constexpr auto kInt16 = c10::kShort
 
constexpr auto kInt32 = c10::kInt
 
constexpr auto kInt64 = c10::kLong
 
constexpr auto kFloat16 = c10::kHalf
 
constexpr auto kFloat32 = c10::kFloat
 
constexpr auto kFloat64 = c10::kDouble
 
constexpr auto kCPU = c10::DeviceType::CPU
 
constexpr auto kCUDA = c10::DeviceType::CUDA
 
constexpr std::array< std::array< Size, 3 >, 3 > mandel_reverse_index
 
constexpr std::array< std::array< Size, 2 >, 6 > mandel_index
 
constexpr std::array< std::array< Size, 3 >, 3 > skew_reverse_index
 
constexpr std::array< std::array< Real, 3 >, 3 > skew_factor
 
constexpr auto eps = std::numeric_limits<Real>::epsilon()
 Constants.
 
constexpr Real sqrt2 = 1.4142135623730951
 
constexpr Real invsqrt2 = 0.7071067811865475
 

Detailed Description

This file contains implementation details of the TensorBase class. Refer to TensorBase.h for the class definition.

Typedef Documentation

◆ ArrayRef

template<typename T>
using ArrayRef = c10::ArrayRef<T>

◆ ATensor

using ATensor = at::Tensor

◆ BuildPtr

using BuildPtr = std::shared_ptr<NEML2Object> (*)(const OptionSet & options)

◆ DerivMap

◆ Device

using Device = c10::Device

◆ DeviceIndex

using DeviceIndex = c10::DeviceIndex

◆ Dtype

using Dtype = c10::ScalarType

◆ Integer

using Integer = int64_t

◆ R2IncrementToRate

◆ Real

using Real = double

◆ ScalarBackwardEulerTimeIntegration

◆ ScalarForwardEulerTimeIntegration

◆ ScalarIncrementToRate

◆ ScalarLinearCombination

◆ ScalarLinearInterpolation

◆ ScalarTwoStageThermalAnnealing

◆ ScalarVariableRate

◆ SecDerivMap

◆ Size

using Size = int64_t

◆ SmallVector

template<typename T, unsigned N>
using SmallVector = c10::SmallVector<T, N>

◆ SR2BackwardEulerTimeIntegration

◆ SR2CrystalMean

◆ SR2ForwardEulerTimeIntegration

◆ SR2IncrementToRate

◆ SR2LinearCombination

◆ SR2LinearInterpolation

◆ SR2TwoStageThermalAnnealing

◆ SR2VariableRate

◆ SubaxisName

◆ TensorDataContainer

using TensorDataContainer = torch::detail::TensorDataContainer

◆ TensorOptions

using TensorOptions = c10::TensorOptions

◆ TensorShape

using TensorShape = c10::SmallVector<Size, 8>

◆ TensorShapeRef

using TensorShapeRef = c10::ArrayRef<Size>

◆ ValueMap

using ValueMap = std::map<LabeledAxisAccessor, Tensor>

◆ VariableName

◆ VecBackwardEulerTimeIntegration

◆ VecForwardEulerTimeIntegration

◆ VecIncrementToRate

◆ VecLinearCombination

◆ VecLinearInterpolation

◆ VecVariableRate

Enumeration Type Documentation

◆ ElasticConstant

enum class ElasticConstant : std::uint8_t
strong
Enumerator
INVALID 
LAME_LAMBDA 
BULK_MODULUS 
SHEAR_MODULUS 
YOUNGS_MODULUS 
POISSONS_RATIO 
P_WAVE_MODULUS 
CUBIC_C1 
CUBIC_C2 
CUBIC_C3 

◆ FType

enum class FType : int8_t
strong

Role in a function definition.

NONE is the default value, INPUT stands for input variable, OUTPUT stands for output variable, PARAMETER stands for parameter (could request AD), BUFFER stands for buffer.

Enumerator
NONE 
INPUT 
OUTPUT 
PARAMETER 
BUFFER 

◆ TensorType

enum class TensorType : int8_t
strong
Enumerator
FOR_ALL_TENSORBASE_COMMA 
kUknown 

Function Documentation

◆ assign_or_add()

void assign_or_add ( Tensor & dest,
const Tensor & val )

◆ base_cat()

Tensor base_cat ( const std::vector< Tensor > & tensors,
Size d )

◆ base_diag_embed()

Tensor base_diag_embed ( const Tensor & a,
Size offset,
Size d1,
Size d2 )

◆ base_mean()

Tensor base_mean ( const Tensor & a,
Size d )

◆ base_stack()

neml2::Tensor base_stack ( const std::vector< Tensor > & tensors,
Size d )

◆ base_sum()

Tensor base_sum ( const Tensor & a,
Size d )

◆ bmm()

Tensor bmm ( const Tensor & a,
const Tensor & b )

Batched matrix-matrix product.

The input matrices a and b must have exactly 2 base dimensions. The batch shapes must broadcast.

◆ bmv()

Tensor bmv ( const Tensor & a,
const Tensor & v )

Batched matrix-vector product.

The input tensor a must have exactly 2 base dimensions. The input tensor v must have exactly 1 base dimension. The batch shapes must broadcast.

◆ broadcast_batch_size()

std::size_t broadcast_batch_size ( const ValueMap & value_map,
Size batch_dim )

◆ buffer_name_separator()

std::string & buffer_name_separator ( )

Default nested buffer name separator

◆ bvv()

Scalar bvv ( const Tensor & a,
const Tensor & b )

Batched vector-vector (dot) product.

The input tensor a must have exactly 1 base dimension. The input tensor b must have exactly 1 base dimension. The batch shapes must broadcast.

◆ check_precision()

void check_precision ( )

Check the current default precision and warn if it's not double precision.

◆ current_diagnoses()

std::vector< Diagnosis > & current_diagnoses ( )

Get the current diagnoses.

◆ current_diagnostic_state()

DiagnosticState & current_diagnostic_state ( )

Get the current diagnostic state.

◆ currently_solving_nonlinear_system()

bool & currently_solving_nonlinear_system ( )

A model can be _implicit. An implicit model need to be "solved": the state variables should be iteratively updated until the residual becomes zero. During the solve, we only need derivatives with respect to the input state. Therefore, the model can/should avoid unnecessary computations by examining whether the current evaluation is part of the solve.

◆ d_multiply_and_make_skew_d_first()

WSR4 d_multiply_and_make_skew_d_first ( const SR2 & b)

◆ d_multiply_and_make_skew_d_second()

WSR4 d_multiply_and_make_skew_d_second ( const SR2 & a)

◆ d_skew_and_sym_to_sym_d_skew()

SWR4 d_skew_and_sym_to_sym_d_skew ( const SR2 & e)

◆ d_skew_and_sym_to_sym_d_sym()

SSR4 d_skew_and_sym_to_sym_d_sym ( const WR2 & w)

◆ default_integer_dtype()

Dtype & default_integer_dtype ( )

Default integral type.

◆ default_integer_tensor_options()

TensorOptions default_integer_tensor_options ( )

Default integral tensor options.

◆ default_tensor_options()

TensorOptions default_tensor_options ( )

Default floating point tensor options.

◆ derivmap_cat_reduce()

DerivMap derivmap_cat_reduce ( std::vector< DerivMap > && results,
Size batch_dim )

Concatenate the tensors in the DerivMap along the batch dimension.

Parameters
resultsThe results to concatenate
batch_dimThe batch dimension along which to concatenate
Returns
DerivMap with the tensors concatenated along the batch dimension

◆ derivmap_move_device()

DerivMap derivmap_move_device ( DerivMap && x,
Device device )

Move all tensors in a DerivMap to a device.

Parameters
xinput DerivMap
devicetarget device
Returns
DerivMap with all tensors moved

◆ derivmap_no_operation()

DerivMap derivmap_no_operation ( DerivMap && x)

No operation.

◆ diagnose()

std::vector< Diagnosis > diagnose ( const DiagnosticsInterface & patient)

A helper function to diagnose common setup errors.

◆ diagnostic_assert() [1/2]

template<typename... Args>
void diagnostic_assert ( bool assertion,
Args &&... args )

◆ diagnostic_assert() [2/2]

template<typename... Args>
void diagnostic_assert ( bool ,
Args && ... )

Helper assertion function for diagnostics.

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [1/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_ADD_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [2/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_ADD_SELF )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [3/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_ADD_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [4/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_ADD_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [5/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_DIV_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [6/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_DIV_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [7/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_DIV_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [8/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_MUL_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [9/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_MUL_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [10/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_MUL_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [11/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_SUB_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [12/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_SUB_SELF )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [13/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_SUB_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [14/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DECLARE_SUB_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [15/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_ADD_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [16/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_ADD_SELF )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [17/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_ADD_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [18/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_ADD_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [19/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_DIV_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [20/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_DIV_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [21/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_DIV_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [22/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_MUL_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [23/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_MUL_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [24/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_MUL_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [25/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_SUB_EQ )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [26/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_SUB_SELF )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [27/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_SUB_SYM_REAL )

◆ FOR_ALL_NONSCALAR_PRIMITIVETENSOR() [28/28]

FOR_ALL_NONSCALAR_PRIMITIVETENSOR ( DEFINE_SUB_SYM_SCALAR )

◆ FOR_ALL_NONSCALAR_TENSORBASE()

FOR_ALL_NONSCALAR_TENSORBASE ( DEFINE_POW )

◆ FOR_ALL_PRIMITIVETENSOR() [1/18]

FOR_ALL_PRIMITIVETENSOR ( EMPTYPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [2/18]

FOR_ALL_PRIMITIVETENSOR ( FULLPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [3/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE )

◆ FOR_ALL_PRIMITIVETENSOR() [4/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE_ADD_VARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [5/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE_CREATE_VARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [6/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE_DECLARE_INPUT_VARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [7/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE_DECLARE_OUTPUT_VARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [8/18]

FOR_ALL_PRIMITIVETENSOR ( INSTANTIATE_VARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [9/18]

FOR_ALL_PRIMITIVETENSOR ( LINSPACEPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [10/18]

FOR_ALL_PRIMITIVETENSOR ( LOGSPACEPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [11/18]

FOR_ALL_PRIMITIVETENSOR ( ONESPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [12/18]

FOR_ALL_PRIMITIVETENSOR ( PARAMETERSTORE_INTANTIATE_PRIMITIVETENSOR )

◆ FOR_ALL_PRIMITIVETENSOR() [13/18]

FOR_ALL_PRIMITIVETENSOR ( REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [14/18]

FOR_ALL_PRIMITIVETENSOR ( REGISTER_CONSTANTPARAMETER )

◆ FOR_ALL_PRIMITIVETENSOR() [15/18]

FOR_ALL_PRIMITIVETENSOR ( REGISTER_COPYVARIABLE )

◆ FOR_ALL_PRIMITIVETENSOR() [16/18]

FOR_ALL_PRIMITIVETENSOR ( REGISTER_PRIMITIVETENSORFROMTORCHSCRIPT )

◆ FOR_ALL_PRIMITIVETENSOR() [17/18]

FOR_ALL_PRIMITIVETENSOR ( USERPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_PRIMITIVETENSOR() [18/18]

FOR_ALL_PRIMITIVETENSOR ( ZEROSPRIMITIVETENSOR_REGISTER )

◆ FOR_ALL_TENSORBASE() [1/70]

FOR_ALL_TENSORBASE ( BUFFERSTORE_INTANTIATE_TENSORBASE )

◆ FOR_ALL_TENSORBASE() [2/70]

FOR_ALL_TENSORBASE ( DECLARE_ABS )

◆ FOR_ALL_TENSORBASE() [3/70]

FOR_ALL_TENSORBASE ( DECLARE_ACOS )

◆ FOR_ALL_TENSORBASE() [4/70]

FOR_ALL_TENSORBASE ( DECLARE_ASIN )

◆ FOR_ALL_TENSORBASE() [5/70]

FOR_ALL_TENSORBASE ( DECLARE_ATAN )

◆ FOR_ALL_TENSORBASE() [6/70]

FOR_ALL_TENSORBASE ( DECLARE_BATCH_CAT )

◆ FOR_ALL_TENSORBASE() [7/70]

FOR_ALL_TENSORBASE ( DECLARE_BATCH_DIAG_EMBED )

◆ FOR_ALL_TENSORBASE() [8/70]

FOR_ALL_TENSORBASE ( DECLARE_BATCH_MEAN )

◆ FOR_ALL_TENSORBASE() [9/70]

FOR_ALL_TENSORBASE ( DECLARE_BATCH_STACK )

◆ FOR_ALL_TENSORBASE() [10/70]

FOR_ALL_TENSORBASE ( DECLARE_BATCH_SUM )

◆ FOR_ALL_TENSORBASE() [11/70]

FOR_ALL_TENSORBASE ( DECLARE_CBRT )

◆ FOR_ALL_TENSORBASE() [12/70]

FOR_ALL_TENSORBASE ( DECLARE_CLAMP )

◆ FOR_ALL_TENSORBASE() [13/70]

FOR_ALL_TENSORBASE ( DECLARE_COS )

◆ FOR_ALL_TENSORBASE() [14/70]

FOR_ALL_TENSORBASE ( DECLARE_COSH )

◆ FOR_ALL_TENSORBASE() [15/70]

FOR_ALL_TENSORBASE ( DECLARE_DEG2RAD )

◆ FOR_ALL_TENSORBASE() [16/70]

FOR_ALL_TENSORBASE ( DECLARE_DIFF )

◆ FOR_ALL_TENSORBASE() [17/70]

FOR_ALL_TENSORBASE ( DECLARE_EXP )

◆ FOR_ALL_TENSORBASE() [18/70]

FOR_ALL_TENSORBASE ( DECLARE_FMOD )

◆ FOR_ALL_TENSORBASE() [19/70]

FOR_ALL_TENSORBASE ( DECLARE_GCD )

◆ FOR_ALL_TENSORBASE() [20/70]

FOR_ALL_TENSORBASE ( DECLARE_HEAVISIDE )

◆ FOR_ALL_TENSORBASE() [21/70]

FOR_ALL_TENSORBASE ( DECLARE_LOG )

◆ FOR_ALL_TENSORBASE() [22/70]

FOR_ALL_TENSORBASE ( DECLARE_LOG10 )

◆ FOR_ALL_TENSORBASE() [23/70]

FOR_ALL_TENSORBASE ( DECLARE_MACAULAY )

◆ FOR_ALL_TENSORBASE() [24/70]

FOR_ALL_TENSORBASE ( DECLARE_MINIMUM )

◆ FOR_ALL_TENSORBASE() [25/70]

FOR_ALL_TENSORBASE ( DECLARE_POW )

◆ FOR_ALL_TENSORBASE() [26/70]

FOR_ALL_TENSORBASE ( DECLARE_SIGN )

◆ FOR_ALL_TENSORBASE() [27/70]

FOR_ALL_TENSORBASE ( DECLARE_SIN )

◆ FOR_ALL_TENSORBASE() [28/70]

FOR_ALL_TENSORBASE ( DECLARE_SINH )

◆ FOR_ALL_TENSORBASE() [29/70]

FOR_ALL_TENSORBASE ( DECLARE_SQRT )

◆ FOR_ALL_TENSORBASE() [30/70]

FOR_ALL_TENSORBASE ( DECLARE_TAN )

◆ FOR_ALL_TENSORBASE() [31/70]

FOR_ALL_TENSORBASE ( DECLARE_TANH )

◆ FOR_ALL_TENSORBASE() [32/70]

FOR_ALL_TENSORBASE ( DECLARE_TENSOR )

◆ FOR_ALL_TENSORBASE() [33/70]

FOR_ALL_TENSORBASE ( DECLARE_WHERE )

◆ FOR_ALL_TENSORBASE() [34/70]

FOR_ALL_TENSORBASE ( DEFINE_ABS )

◆ FOR_ALL_TENSORBASE() [35/70]

FOR_ALL_TENSORBASE ( DEFINE_ARCCOS )

◆ FOR_ALL_TENSORBASE() [36/70]

FOR_ALL_TENSORBASE ( DEFINE_ARCSIN )

◆ FOR_ALL_TENSORBASE() [37/70]

FOR_ALL_TENSORBASE ( DEFINE_ARCTAN )

◆ FOR_ALL_TENSORBASE() [38/70]

FOR_ALL_TENSORBASE ( DEFINE_BATCH_DIAG_EMDED )

◆ FOR_ALL_TENSORBASE() [39/70]

FOR_ALL_TENSORBASE ( DEFINE_BATCH_MEAN )

◆ FOR_ALL_TENSORBASE() [40/70]

FOR_ALL_TENSORBASE ( DEFINE_BATCH_STACK )

◆ FOR_ALL_TENSORBASE() [41/70]

FOR_ALL_TENSORBASE ( DEFINE_BATCH_SUM )

◆ FOR_ALL_TENSORBASE() [42/70]

FOR_ALL_TENSORBASE ( DEFINE_CAT )

◆ FOR_ALL_TENSORBASE() [43/70]

FOR_ALL_TENSORBASE ( DEFINE_CBRT )

◆ FOR_ALL_TENSORBASE() [44/70]

FOR_ALL_TENSORBASE ( DEFINE_CLAMP )

◆ FOR_ALL_TENSORBASE() [45/70]

FOR_ALL_TENSORBASE ( DEFINE_COS )

◆ FOR_ALL_TENSORBASE() [46/70]

FOR_ALL_TENSORBASE ( DEFINE_COSH )

◆ FOR_ALL_TENSORBASE() [47/70]

FOR_ALL_TENSORBASE ( DEFINE_DEG2RAD )

◆ FOR_ALL_TENSORBASE() [48/70]

FOR_ALL_TENSORBASE ( DEFINE_DIFF )

◆ FOR_ALL_TENSORBASE() [49/70]

FOR_ALL_TENSORBASE ( DEFINE_EXP )

◆ FOR_ALL_TENSORBASE() [50/70]

FOR_ALL_TENSORBASE ( DEFINE_FMOD )

◆ FOR_ALL_TENSORBASE() [51/70]

FOR_ALL_TENSORBASE ( DEFINE_GCD )

◆ FOR_ALL_TENSORBASE() [52/70]

FOR_ALL_TENSORBASE ( DEFINE_HEAVISIDE )

◆ FOR_ALL_TENSORBASE() [53/70]

FOR_ALL_TENSORBASE ( DEFINE_LOG )

◆ FOR_ALL_TENSORBASE() [54/70]

FOR_ALL_TENSORBASE ( DEFINE_LOG10 )

◆ FOR_ALL_TENSORBASE() [55/70]

FOR_ALL_TENSORBASE ( DEFINE_MACAULAY )

◆ FOR_ALL_TENSORBASE() [56/70]

FOR_ALL_TENSORBASE ( DEFINE_MINIMUM )

◆ FOR_ALL_TENSORBASE() [57/70]

FOR_ALL_TENSORBASE ( DEFINE_SIGN )

◆ FOR_ALL_TENSORBASE() [58/70]

FOR_ALL_TENSORBASE ( DEFINE_SIN )

◆ FOR_ALL_TENSORBASE() [59/70]

FOR_ALL_TENSORBASE ( DEFINE_SINH )

◆ FOR_ALL_TENSORBASE() [60/70]

FOR_ALL_TENSORBASE ( DEFINE_SQRT )

◆ FOR_ALL_TENSORBASE() [61/70]

FOR_ALL_TENSORBASE ( DEFINE_TAN )

◆ FOR_ALL_TENSORBASE() [62/70]

FOR_ALL_TENSORBASE ( DEFINE_TANH )

◆ FOR_ALL_TENSORBASE() [63/70]

FOR_ALL_TENSORBASE ( DEFINE_WHERE )

◆ FOR_ALL_TENSORBASE() [64/70]

FOR_ALL_TENSORBASE ( FORWARD_DECLARATION )

◆ FOR_ALL_TENSORBASE() [65/70]

FOR_ALL_TENSORBASE ( INSTANTIATE )

◆ FOR_ALL_TENSORBASE() [66/70]

FOR_ALL_TENSORBASE ( INSTANTIATE_TENSORBASE )

◆ FOR_ALL_TENSORBASE() [67/70]

FOR_ALL_TENSORBASE ( INSTANTIATE_TENSORNAME )

◆ FOR_ALL_TENSORBASE() [68/70]

FOR_ALL_TENSORBASE ( INSTANTIATE_TENSORVALUE )

◆ FOR_ALL_TENSORBASE() [69/70]

FOR_ALL_TENSORBASE ( PARAMETERSTORE_INTANTIATE_TENSORBASE )

◆ FOR_ALL_TENSORBASE() [70/70]

FOR_ALL_TENSORBASE ( SPECIALIZE_TENSORTYPEENUM )

◆ FOR_ALL_VECBASE()

FOR_ALL_VECBASE ( VECBASE_INSTANTIATE )

◆ full_to_mandel()

Tensor full_to_mandel ( const Tensor & full,
Size dim = 0 )

Convert a Tensor from full notation to Mandel notation.

The tensor in full notation full can have arbitrary batch shape. The optional argument dim denotes the base dimension starting from which the conversion should take place.

For example, a full tensor has shape (2, 3, 1, 5; 2, 9, 3, 3, 2, 3) where the semicolon separates batch and base shapes. The symmetric axes have base dim 2 and 3. After converting to Mandel notation, the resulting tensor will have shape (2, 3, 1, 5; 2, 9, 6, 2, 3). Note how the shape of the symmetric dimensions (3, 3) becomes (6). In this example, the base dim (the second argument to this function) should be 2.

Parameters
fullThe input tensor in full notation
dimThe base dimension where the symmetric axes start
Returns
Tensor The resulting tensor using Mandel notation to represent the symmetric axes.

◆ full_to_mandel_factor()

const Tensor & full_to_mandel_factor ( const TensorOptions & opt)

◆ full_to_mandel_map()

const Tensor & full_to_mandel_map ( const TensorOptions & opt)

◆ full_to_reduced()

Tensor full_to_reduced ( const Tensor & full,
const Tensor & rmap,
const Tensor & rfactors,
Size dim = 0 )

Generic function to reduce two axes to one with some map.

The tensor in full notation full can have arbitrary batch shape. The optional argument dim denotes the base dimension starting from which the conversion should take place.

The function will reduce the two axis at the desired location down to one, using the provided maps.

For example, a full tensor has shape (2, 3, 1, 5; 2, 9, 3, 3, 2, 3) where the semicolon separates batch and base shapes. The reduction axes have base dim 2 and 3. After applying the reduction, the resulting tensor will have shape (2, 3, 1, 5; 2, 9, X, 2, 3) where X is the reduced shape. In this example, the base dim (the second argument to this function) should be 2.

Parameters
fullThe input tensor in full notation
rmapThe reduction map
rfactorsThe reduction factors
dimThe base dimension where the reduced axes start
Returns
Tensor The reduced tensor

◆ full_to_skew()

Tensor full_to_skew ( const Tensor & full,
Size dim = 0 )

Convert a Tensor from full notation to skew vector notation.

The tensor in full notation full can have arbitrary batch shape. The optional argument dim denotes the base dimension starting from which the conversion should take place.

For example, a full tensor has shape (2, 3, 1, 5; 2, 9, 3, 3, 2, 3) where the semicolon separates batch and base shapes. The symmetric axes have base dim 2 and 3. After converting to skew notation, the resulting tensor will have shape (2, 3, 1, 5; 2, 9, 3, 2, 3). Note how the shape of the symmetric dimensions (3, 3) becomes (3). In this example, the base dim (the second argument to this function) should be 2.

Parameters
fullThe input tensor in full notation
dimThe base dimension where the symmetric axes start
Returns
Tensor The resulting tensor using skew notation to represent the skew-symmetric axes.

◆ full_to_skew_factor()

const Tensor & full_to_skew_factor ( const TensorOptions & opt)

◆ full_to_skew_map()

const Tensor & full_to_skew_map ( const TensorOptions & opt)

◆ get_default_dtype()

Dtype get_default_dtype ( )

Get default dtype.

◆ get_driver()

Driver & get_driver ( const std::string & dname)

A convenient function to manufacture a neml2::Driver.

The input file must have already been parsed and loaded.

Parameters
dnameName of the driver

◆ get_force()

template<typename T>
void get_force ( std::vector< VariableName > & names,
std::vector< Tensor > & values,
const OptionSet & options,
const std::string & name_opt,
const std::string & value_opt,
const Device & device )

◆ get_model()

Model & get_model ( const std::string & mname)

A convenient function to manufacture a neml2::Model.

The input file must have already been parsed and loaded.

Parameters
mnameName of the model

◆ identity_transform()

R2 identity_transform ( const TensorOptions & options)

The identity transformation, i.e.e the Rank2 identity tensor.

◆ improper_rotation_transform()

R2 improper_rotation_transform ( const Rot & rot)

An improper rotation (rotation + reflection), here provided by a rot object giving the rotation and reflection axis.

◆ inversion_transform()

R2 inversion_transform ( const TensorOptions & option)

An inversion center.

◆ jacrev() [1/2]

std::vector< Tensor > jacrev ( const Tensor & y,
const std::vector< Tensor > & xs,
bool retain_graph = false,
bool create_graph = false,
bool allow_unused = false )

Use automatic differentiation (AD) to calculate the derivatives of a Tensor w.r.t. another Tensor.

Warning
Torch (and hence NEML2) AD wasn't designed to compute the full Jacobian from the very beginning. Using this method to calculate the full Jacobian is inefficient and is subjected to some restrictions on batch shapes.
Parameters
yThe Tensor to to be differentiated
xsThe arguments to take derivatives with respect to
retain_graphWhether to retain the computation graph (necessary if y has base storage size>1)
create_graphWhether to create the computation graph (necessary if you want to differentiate the returned Jacobian)
allow_unusedWhether to allow unused input argument x
Returns
Tensor y/p

◆ jacrev() [2/2]

Tensor jacrev ( const Tensor & y,
const Tensor & x,
bool retain_graph,
bool create_graph,
bool allow_unused )

Similar to the other jacrev, but for a single input.

◆ LabeledAxisAccessor::operator std::vector< std::string >()

LabeledAxisAccessor::operator std::vector< std::string > ( ) const

◆ list_derivative_outer_product_a()

template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_a ( F && f,
const T1 & a,
const T2 & b )

outer product on lists, where the first input is a list tensor

◆ list_derivative_outer_product_ab()

template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_ab ( F && f,
const T1 & a,
const T2 & b )

outer product on lists where both inputs are list tensors

◆ list_derivative_outer_product_b()

template<typename F, typename T1, typename T2>
Tensor list_derivative_outer_product_b ( F && f,
const T1 & a,
const T2 & b )

outer product on lists, where the second input is a list tensor

◆ load_input()

void load_input ( const std::filesystem::path & path,
const std::string & additional_input = "" )

A convenient function to parse all options from an input file.

Previously loaded input options will be discarded!

Warning
All threads share the same input options, so in principle this function is not intended to be called inside a threaded region.
Parameters
pathPath to the input file to be parsed
additional_inputAdditional cliargs to pass to the parser

◆ load_model()

Model & load_model ( const std::filesystem::path & path,
const std::string & mname )

A convenient function to load an input file and get a model.

Warning
All threads share the same input options, so in principle this function is not intended to be called inside a threaded region.
Parameters
pathPath to the input file to be parsed
mnameName of the model

◆ machine_precision()

Real & machine_precision ( )

Machine precision

◆ mandel_factor()

Real mandel_factor ( Size i)
inlineconstexpr

◆ mandel_to_full()

Tensor mandel_to_full ( const Tensor & mandel,
Size dim = 0 )

Convert a Tensor from Mandel notation to full notation.

See full_to_mandel for a detailed explanation.

Parameters
mandelThe input tensor in Mandel notation
dimThe base dimension where the symmetric axes start
Returns
Tensor The resulting tensor in full notation.

◆ mandel_to_full_factor()

const Tensor & mandel_to_full_factor ( const TensorOptions & opt)

◆ mandel_to_full_map()

const Tensor & mandel_to_full_map ( const TensorOptions & opt)

◆ multiply_and_make_skew()

WR2 multiply_and_make_skew ( const SR2 & a,
const SR2 & b )

◆ name()

std::string name ( ElasticConstant p)

◆ neml_assert()

template<typename... Args>
void neml_assert ( bool assertion,
Args &&... args )

◆ neml_assert_base_broadcastable() [1/2]

template<class... T>
void neml_assert_base_broadcastable ( const T &... tensors)

◆ neml_assert_base_broadcastable() [2/2]

template<class... T>
void neml_assert_base_broadcastable ( const T & ...)

A helper function to assert that all tensors are base-broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_base_broadcastable_dbg() [1/2]

template<class... T>
void neml_assert_base_broadcastable_dbg ( const T &... tensors)

◆ neml_assert_base_broadcastable_dbg() [2/2]

template<class... T>
void neml_assert_base_broadcastable_dbg ( const T & ...)

A helper function to assert that (in Debug mode) all tensors are base-broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_batch_broadcastable() [1/2]

template<class... T>
void neml_assert_batch_broadcastable ( const T &... tensors)

◆ neml_assert_batch_broadcastable() [2/2]

template<class... T>
void neml_assert_batch_broadcastable ( const T & ...)

A helper function to assert that all tensors are batch-broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_batch_broadcastable_dbg() [1/2]

template<class... T>
void neml_assert_batch_broadcastable_dbg ( const T &... tensors)

◆ neml_assert_batch_broadcastable_dbg() [2/2]

template<class... T>
void neml_assert_batch_broadcastable_dbg ( const T & ...)

A helper function to assert that (in Debug mode) all tensors are batch-broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_broadcastable() [1/2]

template<class... T>
void neml_assert_broadcastable ( const T &... tensors)

◆ neml_assert_broadcastable() [2/2]

template<class... T>
void neml_assert_broadcastable ( const T & ...)

A helper function to assert that all tensors are broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_broadcastable_dbg() [1/2]

template<class... T>
void neml_assert_broadcastable_dbg ( const T &... tensors)

◆ neml_assert_broadcastable_dbg() [2/2]

template<class... T>
void neml_assert_broadcastable_dbg ( const T & ...)

A helper function to assert (in Debug mode) that all tensors are broadcastable.

In most cases, this assertion is necessary as libTorch will raise runtime_errors if things go wrong. Therefore, this function is just so that we can detect errors before libTorch does and emit some more mearningful error messages within the NEML2 context.

◆ neml_assert_dbg()

template<typename... Args>
void neml_assert_dbg ( bool assertion,
Args &&... args )

◆ neml_assert_not_tracing()

void neml_assert_not_tracing ( )

Assert that we are currently NOT tracing.

◆ neml_assert_not_tracing_dbg()

void neml_assert_not_tracing_dbg ( )

Assert that we are currently NOT tracing (only effective in debug mode)

◆ neml_assert_tracing()

void neml_assert_tracing ( )

Assert that we are currently tracing.

◆ neml_assert_tracing_dbg()

void neml_assert_tracing_dbg ( )

Assert that we are currently tracing (only effective in debug mode)

◆ operator!=() [1/4]

bool operator!= ( const LabeledAxis & a,
const LabeledAxis & b )

◆ operator!=() [2/4]

bool operator!= ( const LabeledAxisAccessor & a,
const LabeledAxisAccessor & b )

Compare for equality between two LabeledAxisAccessor.

◆ operator!=() [3/4]

bool operator!= ( const TraceableSize & lhs,
const TraceableSize & rhs )

◆ operator!=() [4/4]

bool operator!= ( const TraceableTensorShape & lhs,
const TraceableTensorShape & rhs )

◆ operator*() [1/17]

template<class Derived1, class Derived2, typename, typename>
R2 operator* ( const Derived1 & A,
const Derived2 & B )

matrix-matrix product

◆ operator*() [2/17]

template<class Derived1, class Derived2, typename, typename>
Vec operator* ( const Derived1 & A,
const Derived2 & b )

matrix-vector product

◆ operator*() [3/17]

template R2 operator* ( const R2 & A,
const R2 & B )

◆ operator*() [4/17]

template Vec operator* ( const R2 & A,
const Vec & b )

◆ operator*() [5/17]

Scalar operator* ( const Real & a,
const Scalar & b )

◆ operator*() [6/17]

Tensor operator* ( const Real & a,
const Tensor & b )

◆ operator*() [7/17]

Rot operator* ( const Rot & r1,
const Rot & r2 )

Composition of rotations r3 = r1 * r2 (r2 first, then r1)

◆ operator*() [8/17]

Scalar operator* ( const Scalar & a,
const Real & b )

◆ operator*() [9/17]

Scalar operator* ( const Scalar & a,
const Scalar & b )

◆ operator*() [10/17]

Tensor operator* ( const Scalar & a,
const Tensor & b )

◆ operator*() [11/17]

SR2 operator* ( const SR2 & a,
const SSR4 & b )

◆ operator*() [12/17]

SR2 operator* ( const SSR4 & a,
const SR2 & b )

◆ operator*() [13/17]

SSR4 operator* ( const SSR4 & a,
const SSR4 & b )

◆ operator*() [14/17]

template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator* ( const T1 & a,
const T2 & b )

◆ operator*() [15/17]

Tensor operator* ( const Tensor & a,
const Real & b )

◆ operator*() [16/17]

Tensor operator* ( const Tensor & a,
const Scalar & b )

◆ operator*() [17/17]

Tensor operator* ( const Tensor & a,
const Tensor & b )

◆ operator*=() [1/2]

Scalar & operator*= ( Scalar & a,
const Real & b )

◆ operator*=() [2/2]

Tensor & operator*= ( Tensor & a,
const Real & b )

◆ operator+() [1/9]

Scalar operator+ ( const Real & a,
const Scalar & b )

◆ operator+() [2/9]

Tensor operator+ ( const Real & a,
const Tensor & b )

◆ operator+() [3/9]

Scalar operator+ ( const Scalar & a,
const Real & b )

◆ operator+() [4/9]

Scalar operator+ ( const Scalar & a,
const Scalar & b )

◆ operator+() [5/9]

Tensor operator+ ( const Scalar & a,
const Tensor & b )

◆ operator+() [6/9]

template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator+ ( const T1 & a,
const T2 & b )

◆ operator+() [7/9]

Tensor operator+ ( const Tensor & a,
const Real & b )

◆ operator+() [8/9]

Tensor operator+ ( const Tensor & a,
const Scalar & b )

◆ operator+() [9/9]

Tensor operator+ ( const Tensor & a,
const Tensor & b )

◆ operator+=() [1/2]

Scalar & operator+= ( Scalar & a,
const Real & b )

◆ operator+=() [2/2]

Tensor & operator+= ( Tensor & a,
const Real & b )

◆ operator-() [1/9]

Scalar operator- ( const Real & a,
const Scalar & b )

◆ operator-() [2/9]

Tensor operator- ( const Real & a,
const Tensor & b )

◆ operator-() [3/9]

Scalar operator- ( const Scalar & a,
const Real & b )

◆ operator-() [4/9]

Scalar operator- ( const Scalar & a,
const Scalar & b )

◆ operator-() [5/9]

Tensor operator- ( const Scalar & a,
const Tensor & b )

◆ operator-() [6/9]

template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator- ( const T1 & a,
const T2 & b )

◆ operator-() [7/9]

Tensor operator- ( const Tensor & a,
const Real & b )

◆ operator-() [8/9]

Tensor operator- ( const Tensor & a,
const Scalar & b )

◆ operator-() [9/9]

Tensor operator- ( const Tensor & a,
const Tensor & b )

◆ operator-=() [1/2]

Scalar & operator-= ( Scalar & a,
const Real & b )

◆ operator-=() [2/2]

Tensor & operator-= ( Tensor & a,
const Real & b )

◆ operator/() [1/9]

Scalar operator/ ( const Real & a,
const Scalar & b )

◆ operator/() [2/9]

Tensor operator/ ( const Real & a,
const Tensor & b )

◆ operator/() [3/9]

Scalar operator/ ( const Scalar & a,
const Real & b )

◆ operator/() [4/9]

Scalar operator/ ( const Scalar & a,
const Scalar & b )

◆ operator/() [5/9]

Tensor operator/ ( const Scalar & a,
const Tensor & b )

◆ operator/() [6/9]

template<typename T1, typename T2, typename = typename std::enable_if_t<std::is_base_of_v<VariableBase, T1> || std::is_base_of_v<VariableBase, T2>>>
auto operator/ ( const T1 & a,
const T2 & b )

◆ operator/() [7/9]

Tensor operator/ ( const Tensor & a,
const Real & b )

◆ operator/() [8/9]

Tensor operator/ ( const Tensor & a,
const Scalar & b )

◆ operator/() [9/9]

Tensor operator/ ( const Tensor & a,
const Tensor & b )

◆ operator/=() [1/2]

Scalar & operator/= ( Scalar & a,
const Real & b )

◆ operator/=() [2/2]

Tensor & operator/= ( Tensor & a,
const Real & b )

◆ operator<()

bool operator< ( const LabeledAxisAccessor & a,
const LabeledAxisAccessor & b )

The (strict) smaller than operator is created so as to use LabeledAxisAccessor in sorted data structures.

◆ operator<<() [1/12]

std::ostream & operator<< ( std::ostream & os,
const EnumSelection & es )

◆ operator<<() [2/12]

std::ostream & operator<< ( std::ostream & os,
const LabeledAxis & axis )

◆ operator<<() [3/12]

std::ostream & operator<< ( std::ostream & os,
const LabeledAxisAccessor & accessor )

Serialize the accessor into a string. The format is simply the concatenation of all the item names delimited by "/".

◆ operator<<() [4/12]

std::ostream & operator<< ( std::ostream & os,
const Model & model )

◆ operator<<() [5/12]

std::ostream & operator<< ( std::ostream & os,
const MultiEnumSelection & es )

◆ operator<<() [6/12]

std::ostream & operator<< ( std::ostream & os,
const OptionBase & opt )

◆ operator<<() [7/12]

std::ostream & operator<< ( std::ostream & os,
const OptionCollection & p )

◆ operator<<() [8/12]

std::ostream & operator<< ( std::ostream & os,
const OptionSet & p )

◆ operator<<() [9/12]

template<typename T>
std::ostream & operator<< ( std::ostream & os,
const TensorName< T > & t )

Stream out a TensorName (used for printing OptionSet)

◆ operator<<() [10/12]

std::ostream & operator<< ( std::ostream & os,
const TensorType & t )

◆ operator<<() [11/12]

std::ostream & operator<< ( std::ostream & os,
const TraceableSize & s )

Streaming operator.

◆ operator<<() [12/12]

std::ostream & operator<< ( std::ostream & os,
FType f )

◆ operator==() [1/4]

bool operator== ( const LabeledAxis & a,
const LabeledAxis & b )

◆ operator==() [2/4]

bool operator== ( const LabeledAxisAccessor & a,
const LabeledAxisAccessor & b )

Compare for equality between two LabeledAxisAccessor.

◆ operator==() [3/4]

bool operator== ( const TraceableSize & lhs,
const TraceableSize & rhs )

Comparison operators

◆ operator==() [4/4]

bool operator== ( const TraceableTensorShape & lhs,
const TraceableTensorShape & rhs )

Comparison operators

◆ operator>>() [1/3]

std::stringstream & operator>> ( std::stringstream & ss,
EnumSelection & es )

◆ operator>>() [2/3]

std::stringstream & operator>> ( std::stringstream & ss,
MultiEnumSelection & es )

◆ operator>>() [3/3]

template<typename T>
std::stringstream & operator>> ( std::stringstream & ss,
TensorName< T > & t )

Stream into a TensorName (used by Parsers to extract input options)

◆ options_compatible()

bool options_compatible ( const OptionSet & opts,
const OptionSet & additional_opts )

◆ parameter_name_separator()

std::string & parameter_name_separator ( )

Default nested parameter name separator.

◆ pow() [1/5]

Scalar pow ( const Real & a,
const Scalar & n )

◆ pow() [2/5]

Tensor pow ( const Real & a,
const Tensor & n )

Element-wise pow.

◆ pow() [3/5]

Scalar pow ( const Scalar & a,
const Real & n )

◆ pow() [4/5]

Scalar pow ( const Scalar & a,
const Scalar & n )

◆ pow() [5/5]

Tensor pow ( const Tensor & a,
const Tensor & n )

Element-wise pow.

◆ proper_rotation_transform()

R2 proper_rotation_transform ( const Rot & rot)

A proper rotation, here provided by a Rot object.

◆ reduced_to_full()

Tensor reduced_to_full ( const Tensor & reduced,
const Tensor & rmap,
const Tensor & rfactors,
Size dim = 0 )

Convert a Tensor from reduced notation to full notation.

See full_to_reduced for a detailed explanation.

Parameters
reducedThe input tensor in reduced notation
rmapThe unreduction map
rfactorsThe unreduction factors
dimThe base dimension where the reduced axes start
Returns
Tensor The resulting tensor in full notation.

◆ reflection_transform()

R2 reflection_transform ( const Vec & v)

A reflection, defined by the reflection plane.

◆ register_NEML2_object() [1/112]

register_NEML2_object ( ArrheniusParameter )

◆ register_NEML2_object() [2/112]

register_NEML2_object ( AssociativeIsotropicPlasticHardening )

◆ register_NEML2_object() [3/112]

register_NEML2_object ( AssociativeJ2FlowDirection )

◆ register_NEML2_object() [4/112]

register_NEML2_object ( AssociativeKinematicPlasticHardening )

◆ register_NEML2_object() [5/112]

register_NEML2_object ( AssociativePlasticFlow )

◆ register_NEML2_object() [6/112]

register_NEML2_object ( AvramiErofeevNucleation )

◆ register_NEML2_object() [7/112]

register_NEML2_object ( ChabochePlasticHardening )

◆ register_NEML2_object() [8/112]

register_NEML2_object ( ChemicalReactionMechanism )

◆ register_NEML2_object() [9/112]

register_NEML2_object ( ComposedModel )

◆ register_NEML2_object() [10/112]

register_NEML2_object ( CubicElasticityTensor )

◆ register_NEML2_object() [11/112]

register_NEML2_object ( DiffusionLimitedReaction )

◆ register_NEML2_object() [12/112]

register_NEML2_object ( ElasticStrainRate )

◆ register_NEML2_object() [13/112]

register_NEML2_object ( EmptyTensor )

◆ register_NEML2_object() [14/112]

register_NEML2_object ( FillMillerIndex )

◆ register_NEML2_object() [15/112]

register_NEML2_object ( FillR2 )

◆ register_NEML2_object() [16/112]

register_NEML2_object ( FillRot )

◆ register_NEML2_object() [17/112]

register_NEML2_object ( FillSR2 )

◆ register_NEML2_object() [18/112]

register_NEML2_object ( FillWR2 )

◆ register_NEML2_object() [19/112]

register_NEML2_object ( FischerBurmeister )

◆ register_NEML2_object() [20/112]

register_NEML2_object ( FixOrientation )

◆ register_NEML2_object() [21/112]

register_NEML2_object ( FredrickArmstrongPlasticHardening )

◆ register_NEML2_object() [22/112]

register_NEML2_object ( FullTensor )

◆ register_NEML2_object() [23/112]

register_NEML2_object ( GeneralElasticity )

◆ register_NEML2_object() [24/112]

register_NEML2_object ( GTNYieldFunction )

◆ register_NEML2_object() [25/112]

register_NEML2_object ( GursonCavitation )

◆ register_NEML2_object() [26/112]

register_NEML2_object ( HermiteSmoothStep )

◆ register_NEML2_object() [27/112]

register_NEML2_object ( IdentityTensor )

◆ register_NEML2_object() [28/112]

register_NEML2_object ( ImplicitUpdate )

◆ register_NEML2_object() [29/112]

register_NEML2_object ( IsotropicElasticityTensor )

◆ register_NEML2_object() [30/112]

register_NEML2_object ( IsotropicMandelStress )

◆ register_NEML2_object() [31/112]

register_NEML2_object ( KocksMeckingActivationEnergy )

◆ register_NEML2_object() [32/112]

register_NEML2_object ( KocksMeckingFlowSwitch )

◆ register_NEML2_object() [33/112]

register_NEML2_object ( KocksMeckingFlowViscosity )

◆ register_NEML2_object() [34/112]

register_NEML2_object ( KocksMeckingIntercept )

◆ register_NEML2_object() [35/112]

register_NEML2_object ( KocksMeckingRateSensitivity )

◆ register_NEML2_object() [36/112]

register_NEML2_object ( KocksMeckingYieldStress )

◆ register_NEML2_object() [37/112]

register_NEML2_object ( LDISolidMechanicsDriver )

◆ register_NEML2_object() [38/112]

register_NEML2_object ( LinearIsotropicElasticity )

◆ register_NEML2_object() [39/112]

register_NEML2_object ( LinearIsotropicElasticJ2TrialStressUpdate )

◆ register_NEML2_object() [40/112]

register_NEML2_object ( LinearIsotropicHardening )

◆ register_NEML2_object() [41/112]

register_NEML2_object ( LinearKinematicHardening )

◆ register_NEML2_object() [42/112]

register_NEML2_object ( LinearSingleSlipHardeningRule )

◆ register_NEML2_object() [43/112]

register_NEML2_object ( LinspaceTensor )

◆ register_NEML2_object() [44/112]

register_NEML2_object ( LogspaceTensor )

◆ register_NEML2_object() [45/112]

register_NEML2_object ( MixedControlSetup )

◆ register_NEML2_object() [46/112]

register_NEML2_object ( Newton )

◆ register_NEML2_object() [47/112]

register_NEML2_object ( NewtonWithLineSearch )

◆ register_NEML2_object() [48/112]

register_NEML2_object ( NewtonWithTrustRegion )

◆ register_NEML2_object() [49/112]

register_NEML2_object ( Normality )

◆ register_NEML2_object() [50/112]

register_NEML2_object ( OlevskySinteringStress )

◆ register_NEML2_object() [51/112]

register_NEML2_object ( OnesTensor )

◆ register_NEML2_object() [52/112]

register_NEML2_object ( Orientation )

◆ register_NEML2_object() [53/112]

register_NEML2_object ( OrientationRate )

◆ register_NEML2_object() [54/112]

register_NEML2_object ( PerzynaPlasticFlowRate )

◆ register_NEML2_object() [55/112]

register_NEML2_object ( PhaseTransformationEigenstrain )

◆ register_NEML2_object() [56/112]

register_NEML2_object ( PlasticDeformationRate )

◆ register_NEML2_object() [57/112]

register_NEML2_object ( PlasticVorticity )

◆ register_NEML2_object() [58/112]

register_NEML2_object ( PowerLawIsotropicHardeningStaticRecovery )

◆ register_NEML2_object() [59/112]

register_NEML2_object ( PowerLawKinematicHardeningStaticRecovery )

◆ register_NEML2_object() [60/112]

register_NEML2_object ( PowerLawSlipRule )

◆ register_NEML2_object() [61/112]

register_NEML2_object ( ProductGeometry )

◆ register_NEML2_object() [62/112]

register_NEML2_object ( ProjectileAcceleration )

◆ register_NEML2_object() [63/112]

register_NEML2_object ( PyrolysisConversionAmount )

◆ register_NEML2_object() [64/112]

register_NEML2_object ( PyrolysisKinetics )

◆ register_NEML2_object() [65/112]

register_NEML2_object ( R2IncrementToRate )

◆ register_NEML2_object() [66/112]

register_NEML2_object ( R2toSR2 )

◆ register_NEML2_object() [67/112]

register_NEML2_object ( R2toWR2 )

◆ register_NEML2_object() [68/112]

register_NEML2_object ( RateIndependentPlasticFlowConstraint )

◆ register_NEML2_object() [69/112]

register_NEML2_object ( ResolvedShear )

◆ register_NEML2_object() [70/112]

register_NEML2_object ( RotationMatrix )

◆ register_NEML2_object() [71/112]

register_NEML2_object ( ScalarBackwardEulerTimeIntegration )

◆ register_NEML2_object() [72/112]

register_NEML2_object ( ScalarForwardEulerTimeIntegration )

◆ register_NEML2_object() [73/112]

register_NEML2_object ( ScalarIncrementToRate )

◆ register_NEML2_object() [74/112]

register_NEML2_object ( ScalarLinearCombination )

◆ register_NEML2_object() [75/112]

register_NEML2_object ( ScalarLinearInterpolation )

◆ register_NEML2_object() [76/112]

register_NEML2_object ( ScalarTwoStageThermalAnnealing )

◆ register_NEML2_object() [77/112]

register_NEML2_object ( ScalarVariableMultiplication )

◆ register_NEML2_object() [78/112]

register_NEML2_object ( ScalarVariableRate )

◆ register_NEML2_object() [79/112]

register_NEML2_object ( SDTSolidMechanicsDriver )

◆ register_NEML2_object() [80/112]

register_NEML2_object ( SimpleMPIScheduler )

◆ register_NEML2_object() [81/112]

register_NEML2_object ( SimpleScheduler )

◆ register_NEML2_object() [82/112]

register_NEML2_object ( SingleSlipStrengthMap )

◆ register_NEML2_object() [83/112]

register_NEML2_object ( SlopeSaturationVoceIsotropicHardening )

◆ register_NEML2_object() [84/112]

register_NEML2_object ( SR2BackwardEulerTimeIntegration )

◆ register_NEML2_object() [85/112]

register_NEML2_object ( SR2CrystalMean )

◆ register_NEML2_object() [86/112]

register_NEML2_object ( SR2ForwardEulerTimeIntegration )

◆ register_NEML2_object() [87/112]

register_NEML2_object ( SR2IncrementToRate )

◆ register_NEML2_object() [88/112]

register_NEML2_object ( SR2Invariant )

◆ register_NEML2_object() [89/112]

register_NEML2_object ( SR2LinearCombination )

◆ register_NEML2_object() [90/112]

register_NEML2_object ( SR2LinearInterpolation )

◆ register_NEML2_object() [91/112]

register_NEML2_object ( SR2toR2 )

◆ register_NEML2_object() [92/112]

register_NEML2_object ( SR2TwoStageThermalAnnealing )

◆ register_NEML2_object() [93/112]

register_NEML2_object ( SR2VariableRate )

◆ register_NEML2_object() [94/112]

register_NEML2_object ( StaticHybridScheduler )

◆ register_NEML2_object() [95/112]

register_NEML2_object ( SumSlipRates )

◆ register_NEML2_object() [96/112]

register_NEML2_object ( SymmetryFromOrbifold )

◆ register_NEML2_object() [97/112]

register_NEML2_object ( TensorFromTorchScript )

◆ register_NEML2_object() [98/112]

register_NEML2_object ( ThermalEigenstrain )

◆ register_NEML2_object() [99/112]

register_NEML2_object ( TransientDriver )

◆ register_NEML2_object() [100/112]

register_NEML2_object ( VecBackwardEulerTimeIntegration )

◆ register_NEML2_object() [101/112]

register_NEML2_object ( VecForwardEulerTimeIntegration )

◆ register_NEML2_object() [102/112]

register_NEML2_object ( VecIncrementToRate )

◆ register_NEML2_object() [103/112]

register_NEML2_object ( VecLinearCombination )

◆ register_NEML2_object() [104/112]

register_NEML2_object ( VecLinearInterpolation )

◆ register_NEML2_object() [105/112]

register_NEML2_object ( VecVariableRate )

◆ register_NEML2_object() [106/112]

register_NEML2_object ( VoceIsotropicHardening )

◆ register_NEML2_object() [107/112]

register_NEML2_object ( VoceSingleSlipHardeningRule )

◆ register_NEML2_object() [108/112]

register_NEML2_object ( VolumeChangeEigenstrain )

◆ register_NEML2_object() [109/112]

register_NEML2_object ( WR2ExplicitExponentialTimeIntegration )

◆ register_NEML2_object() [110/112]

register_NEML2_object ( WR2ImplicitExponentialTimeIntegration )

◆ register_NEML2_object() [111/112]

register_NEML2_object ( YieldFunction )

◆ register_NEML2_object() [112/112]

register_NEML2_object ( ZerosTensor )

◆ register_NEML2_object_alias()

register_NEML2_object_alias ( UserTensor ,
"Tensor"  )

◆ reload_input()

void reload_input ( const std::filesystem::path & path,
const std::string & additional_input = "" )

Similar to neml2::load_input, but additionally clear the Factory before loading the options, therefore all previously loaded models become dangling.

Previously loaded input options will be discarded!

Warning
All threads share the same input options, so in principle this function is not intended to be called inside a threaded region.
Parameters
pathPath to the input file to be parsed
additional_inputAdditional cliargs to pass to the parser

◆ reload_model()

Model & reload_model ( const std::filesystem::path & path,
const std::string & mname )

Similar to neml2::load_model, but additionally clear the Factory before loading the model, therefore all previously loaded models become dangling.

Warning
All threads share the same input options, so in principle this function is not intended to be called inside a threaded region.
Parameters
pathPath to the input file to be parsed
mnameName of the model

◆ require_double_precision()

bool & require_double_precision ( )

Require double precision for all computations.

◆ reserved_subaxis_names()

std::vector< std::string > reserved_subaxis_names ( )

◆ resolve_tensor_name()

template<typename T>
const T & resolve_tensor_name ( const TensorName< T > & tn,
Model * caller,
const std::string & pname )

◆ set_default_dtype()

void set_default_dtype ( Dtype dtype)

Set default dtype

◆ set_ic()

template<typename T>
void set_ic ( ValueMap & storage,
const OptionSet & options,
const std::string & name_opt,
const std::string & value_opt,
const Device & device )

◆ skew_and_sym_to_sym()

SR2 skew_and_sym_to_sym ( const SR2 & e,
const WR2 & w )

◆ skew_to_full()

Tensor skew_to_full ( const Tensor & skew,
Size dim = 0 )

Convert a Tensor from skew vector notation to full notation.

See full_to_skew for a detailed explanation.

Parameters
skewThe input tensor in skew notation
dimThe base dimension where the symmetric axes start
Returns
Tensor The resulting tensor in full notation.

◆ skew_to_full_factor()

const Tensor & skew_to_full_factor ( const TensorOptions & opt)

◆ skew_to_full_map()

const Tensor & skew_to_full_map ( const TensorOptions & opt)

◆ tighter_tolerance()

Real & tighter_tolerance ( )

A tighter tolerance used in various algorithms.

◆ timed_sections()

std::map< std::string, std::map< std::string, unsigned long > > & timed_sections ( )

◆ tolerance()

Real & tolerance ( )

The tolerance used in various algorithms.

◆ transform_from_quaternion()

R2 transform_from_quaternion ( const Quaternion & q)

Construct from quaternions, useful for comparison to old NEML.

◆ valuemap_cat_reduce()

ValueMap valuemap_cat_reduce ( std::vector< ValueMap > && results,
Size batch_dim )

Concatenate the tensors in the ValueMap along the batch dimension.

Parameters
resultsThe results to concatenate
batch_dimThe batch dimension along which to concatenate
Returns
ValueMap with the tensors concatenated along the batch dimension

◆ valuemap_move_device()

ValueMap valuemap_move_device ( ValueMap && x,
Device device )

Move all tensors in a ValueMap to a device.

Parameters
xinput ValueMap
devicetarget device
Returns
ValueMap with all tensors moved

◆ valuemap_no_operation()

ValueMap valuemap_no_operation ( ValueMap && x)

No operation.

Variable Documentation

◆ eps

auto eps = std::numeric_limits<Real>::epsilon()
constexpr

Constants.

◆ FORCES

const std::string FORCES = "forces"
inline

◆ invsqrt2

Real invsqrt2 = 0.7071067811865475
constexpr

◆ kCPU

auto kCPU = c10::DeviceType::CPU
constexpr

◆ kCUDA

auto kCUDA = c10::DeviceType::CUDA
constexpr

◆ kFloat16

auto kFloat16 = c10::kHalf
constexpr

◆ kFloat32

auto kFloat32 = c10::kFloat
constexpr

◆ kFloat64

auto kFloat64 = c10::kDouble
constexpr

◆ kInt16

auto kInt16 = c10::kShort
constexpr

◆ kInt32

auto kInt32 = c10::kInt
constexpr

◆ kInt64

auto kInt64 = c10::kLong
constexpr

◆ kInt8

auto kInt8 = c10::kChar
constexpr

Fixed width dtypes (mirroring the definition in <torch/csrc/api/include/torch/types.h>)

◆ mandel_index

std::array<std::array<Size, 2>, 6> mandel_index
constexpr
Initial value:
{std::array<Size, 2>{0, 0},
std::array<Size, 2>{1, 1},
std::array<Size, 2>{2, 2},
std::array<Size, 2>{1, 2},
std::array<Size, 2>{0, 2},
std::array<Size, 2>{0, 1}}

◆ mandel_reverse_index

std::array<std::array<Size, 3>, 3> mandel_reverse_index
constexpr
Initial value:
{
std::array<Size, 3>{0, 5, 4}, std::array<Size, 3>{5, 1, 3}, std::array<Size, 3>{4, 3, 2}}

◆ OLD_FORCES

const std::string OLD_FORCES = "old_forces"
inline

◆ OLD_STATE

const std::string OLD_STATE = "old_state"
inline

◆ PARAMETERS

const std::string PARAMETERS = "parameters"
inline

◆ RESIDUAL

const std::string RESIDUAL = "residual"
inline

◆ skew_factor

std::array<std::array<Real, 3>, 3> skew_factor
constexpr
Initial value:
{std::array<Real, 3>{0.0, -1.0, 1.0},
std::array<Real, 3>{1.0, 0.0, -1.0},
std::array<Real, 3>{-1.0, 1.0, 0.0}}

◆ skew_reverse_index

std::array<std::array<Size, 3>, 3> skew_reverse_index
constexpr
Initial value:
{
std::array<Size, 3>{0, 2, 1}, std::array<Size, 3>{2, 0, 0}, std::array<Size, 3>{1, 0, 0}}

◆ sqrt2

Real sqrt2 = 1.4142135623730951
constexpr

◆ STATE

const std::string STATE = "state"
inline