|
NEML2 2.0.0
|
NEML2 models can be easily extended or adapted to model the material behavior of your interest.
This set of tutorials define a custom equation to model the conventional projectile motion problem:
\begin{align} \dot{\boldsymbol{x}} & = \boldsymbol{v}, \label{1} \\ \dot{\boldsymbol{v}} & = \boldsymbol{a} = \boldsymbol{g} - \mu \boldsymbol{v}, \label{2} \end{align}
where \(\boldsymbol{x}\) and \(\boldsymbol{v}\) are the position and velocity of the projectile, respectively. \(\boldsymbol{g}\) is the gravitational acceleration, and \(\mu\) is the dynamic viscosity. The projectile's trajectory can be numerically integrated using the backward-Euler method:
\begin{align} \mathbf{r} = \begin{Bmatrix} r_x \\ r_v \end{Bmatrix} & = \begin{Bmatrix} \tilde{\boldsymbol{x}} - \boldsymbol{x}_n - \left(t - t_n\right) \dot{\boldsymbol{x}} \\ \tilde{\boldsymbol{v}} - \boldsymbol{v}_n - \left(t - t_n\right) \dot{\boldsymbol{v}} \\ \end{Bmatrix}, \label{3} \\ \begin{Bmatrix} \boldsymbol{x} \\ \boldsymbol{v} \end{Bmatrix} & = \mathop{\mathrm{root}}\limits_{\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{v}}} \left( \mathbf{r} \right), \label{4} \end{align}
subject to appropriate initial conditions \(\boldsymbol{x}_0\) and \(\boldsymbol{v}_0\)
Among these equations:
ProjectileAcceleration.Each tutorial builds on top of the previous tutorials, introduces and explains one small piece in model development. It is therefore recommended to follow these tutorials in order.
The final model is then used in another set of tutorials on parameter calibration and inference.