27#include "neml2/base/Registry.h"
28#include "neml2/models/Data.h"
29#include "neml2/tensors/indexing.h"
89 const R2 &
A()
const {
return _A; };
91 const SR2 &
M()
const {
return _M; };
93 const WR2 &
W()
const {
return _W; };
100 template <
class Derived,
101 typename =
typename std::enable_if_t<std::is_base_of_v<TensorBase<Derived>, Derived>>>
108 const Vec & lattice_vectors,
109 std::tuple<
Vec,
Vec,
Scalar, std::vector<Size>> slip_data);
112 static Vec make_reciprocal_lattice(
const Vec & lattice_vectors);
115 static std::tuple<Vec, Vec, Scalar, std::vector<Size>>
116 setup_schmid_tensors(
const Vec &
A,
128 const Vec & _lattice_vectors;
130 const Vec & _reciprocal_lattice_vectors;
137 const Vec & _cartesian_slip_directions;
139 const Vec & _cartesian_slip_planes;
143 const std::vector<Size> _slip_offsets;
153template <
class Derived,
typename>
159 return tensor.batch_index(
160 {indexing::Ellipsis, indexing::Slice(_slip_offsets[grp], _slip_offsets[grp + 1])});
Data(const OptionSet &options)
Construct a new Data object.
Definition Data.cxx:38
Represention of a crystal direction or plane a Miller Index.
Definition MillerIndex.h:38
A custom map-like data structure. The keys are strings, and the values can be nonhomogeneously typed.
Definition OptionSet.h:52
Second order tensor without symmetry.
Definition R2.h:42
The symmetric second order tensor.
Definition SR2.h:46
Scalar.
Definition Scalar.h:38
3-vector.
Definition Vec.h:42
A skew-symmetric second order tensor, represented as an axial vector.
Definition WR2.h:43
Vec b3() const
accessor for the third reciprocal lattice vector
Definition CrystalGeometry.cxx:148
const R2 & symmetry_operators() const
Accessor for the crystal class symmetry operators.
Definition CrystalGeometry.h:96
const R2 & A() const
Accessor for the full Schmid tensors.
Definition CrystalGeometry.h:89
const Vec & cartesian_slip_directions() const
Accessor for the slip directions.
Definition CrystalGeometry.h:82
const WR2 & W() const
Accessor for the skew-symmetric Schmid tensors.
Definition CrystalGeometry.h:93
Vec a1() const
accessor for the first lattice vector
Definition CrystalGeometry.cxx:118
const SR2 & M() const
Accessor for the symmetric Schmid tensors.
Definition CrystalGeometry.h:91
const Scalar & burgers() const
Accessor for the burgers vector.
Definition CrystalGeometry.h:86
const Vec & cartesian_slip_planes() const
Accessor for the slip planes.
Definition CrystalGeometry.h:84
CrystalGeometry(const OptionSet &options)
Setup from parameter set.
Definition CrystalGeometry.cxx:67
Derived slip_slice(const Derived &tensor, Size grp) const
Slice a Tensor to provide only the batch associated with a slip system.
Definition CrystalGeometry.h:155
Size nslip() const
Total number of slip systems.
Definition CrystalGeometry.cxx:154
Vec a3() const
accessor for the third lattice vector
Definition CrystalGeometry.cxx:130
Size nslip_in_group(Size i) const
Number of slip systems in a given group.
Definition CrystalGeometry.cxx:167
Vec b2() const
accessor for the second reciprocal lattice vector
Definition CrystalGeometry.cxx:142
Size nslip_groups() const
Number of slip groups.
Definition CrystalGeometry.cxx:160
static OptionSet expected_options()
Input options.
Definition CrystalGeometry.cxx:44
Vec a2() const
accessor for the second lattice vector
Definition CrystalGeometry.cxx:124
Vec b1() const
accessor for the first reciprocal lattice vector
Definition CrystalGeometry.cxx:136
Definition CrystalGeometry.cxx:39
Definition DiagnosticsInterface.cxx:30
int64_t Size
Definition types.h:69