NEML2 2.0.0
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
Optimization

The previous tutorials illustrated the use of NEML2 constitutive models in the "feed-forward" setting, i.e., the model maps from input variables to output variables with a given parametrization, i.e.

y=f(x;p,b).

Recall that p and b are respectively the parameters and the buffers of the model.

Another interesting use of NEML2 constitutive models is parameter calibration: With given input variables x, find the optimal parameter set p such that

p=argminpl(f(x;p,b)),

where l is oftentimes referred to as the loss (or objective) function defining optimality.

This set of tutorials demonstrate the use of PyTorch Autograd to calculate parameter derivatives ( lp), which is a necessary ingredient in all gradient-based optimizers.