|
NEML2 2.0.0
|
This is the complete list of members for WWR4, including all inherited members.
| __add__(WWR4 self, WWR4 arg0) | WWR4 | |
| __add__(WWR4 self, Scalar arg0) | WWR4 | |
| __add__(WWR4 self, float arg0) | WWR4 | |
| __iadd__(WWR4 self, float arg0) | WWR4 | |
| __imul__(WWR4 self, float arg0) | WWR4 | |
| __init__(self) | WWR4 | |
| __init__(self, torch.Tensor tensor, int dynamic_dim, int intmd_dim) | WWR4 | |
| __init__(self, Vec other) | WWR4 | |
| __init__(self, Rot other) | WWR4 | |
| __init__(self, WR2 other) | WWR4 | |
| __init__(self, R2 other) | WWR4 | |
| __init__(self, SR2 other) | WWR4 | |
| __init__(self, R3 other) | WWR4 | |
| __init__(self, SFR3 other) | WWR4 | |
| __init__(self, R4 other) | WWR4 | |
| __init__(self, SFFR4 other) | WWR4 | |
| __init__(self, WFFR4 other) | WWR4 | |
| __init__(self, SSR4 other) | WWR4 | |
| __init__(self, SWR4 other) | WWR4 | |
| __init__(self, WSR4 other) | WWR4 | |
| __init__(self, WWR4 other) | WWR4 | |
| __init__(self, Quaternion other) | WWR4 | |
| __init__(self, MillerIndex other) | WWR4 | |
| __init__(self, Tensor other) | WWR4 | |
| __init__(self, Scalar other) | WWR4 | |
| __init__(self, torch.Tensor tensor, int intmd_dim=0) | WWR4 | |
| __isub__(WWR4 self, float arg0) | WWR4 | |
| __itruediv__(WWR4 self, float arg0) | WWR4 | |
| __mul__(WWR4 self, Scalar arg0) | WWR4 | |
| __mul__(WWR4 self, float arg0) | WWR4 | |
| __neg__(WWR4 self) | WWR4 | |
| __pow__(WWR4 self, float arg0) | WWR4 | |
| __radd__(WWR4 self, Scalar arg0) | WWR4 | |
| __radd__(WWR4 self, float arg0) | WWR4 | |
| __repr__(WWR4 self) | WWR4 | |
| __rmul__(WWR4 self, Scalar arg0) | WWR4 | |
| __rmul__(WWR4 self, float arg0) | WWR4 | |
| __rsub__(WWR4 self, Scalar arg0) | WWR4 | |
| __rsub__(WWR4 self, float arg0) | WWR4 | |
| __rtruediv__(WWR4 self, Scalar arg0) | WWR4 | |
| __rtruediv__(WWR4 self, float arg0) | WWR4 | |
| __str__(WWR4 self) | WWR4 | |
| __sub__(WWR4 self, WWR4 arg0) | WWR4 | |
| __sub__(WWR4 self, Scalar arg0) | WWR4 | |
| __sub__(WWR4 self, float arg0) | WWR4 | |
| __truediv__(WWR4 self, Scalar arg0) | WWR4 | |
| __truediv__(WWR4 self, float arg0) | WWR4 | |
| base(self) | WWR4 | |
| batch(self) | WWR4 | |
| clone(WWR4 self) | WWR4 | |
| contiguous(WWR4 self) | WWR4 | |
| copy_(WWR4 self, torch.Tensor arg0, bool arg1) | WWR4 | |
| defined(WWR4 self) | WWR4 | |
| detach(WWR4 self) | WWR4 | |
| detach_(WWR4 self) | WWR4 | |
| device(self) | WWR4 | |
| dim(WWR4 self) | WWR4 | |
| dtype(self) | WWR4 | |
| dynamic(self) | WWR4 | |
| dynamic_linspace(WWR4 start, WWR4 end, int step, int dim=0) | WWR4 | static |
| dynamic_logspace(WWR4 start, WWR4 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0) | WWR4 | static |
| empty(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| empty(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| empty_like(WWR4 arg0) | WWR4 | static |
| full(float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| full(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| full_like(WWR4 other, float fill_value) | WWR4 | static |
| grad(self) | WWR4 | |
| intmd(self) | WWR4 | |
| intmd_linspace(WWR4 start, WWR4 end, int step, int dim=0) | WWR4 | static |
| intmd_logspace(WWR4 start, WWR4 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0) | WWR4 | static |
| item(WWR4 self) | WWR4 | |
| norm(WWR4 self) | WWR4 | |
| ones(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| ones(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| ones_like(WWR4 arg0) | WWR4 | static |
| rand(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| rand(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| rand_like(WWR4 arg0) | WWR4 | static |
| requires_grad(self) | WWR4 | |
| requires_grad_(WWR4 self, bool arg0) | WWR4 | |
| shape(self) | WWR4 | |
| static(self) | WWR4 | |
| tensor(WWR4 self) | WWR4 | |
| to(WWR4 self, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | |
| torch(WWR4 self) | WWR4 | |
| zero_(WWR4 self) | WWR4 | |
| zeros(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| zeros(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | WWR4 | static |
| zeros_like(WWR4 arg0) | WWR4 | static |