NEML2 2.0.0
Loading...
Searching...
No Matches
R2 Member List

This is the complete list of members for R2, including all inherited members.

__add__(R2 self, R2 arg0)R2
__add__(R2 self, Scalar arg0)R2
__add__(R2 self, float arg0)R2
__iadd__(R2 self, float arg0)R2
__imul__(R2 self, float arg0)R2
__init__(self)R2
__init__(self, torch.Tensor tensor, int dynamic_dim, int intmd_dim)R2
__init__(self, Vec other)R2
__init__(self, Rot other)R2
__init__(self, WR2 other)R2
__init__(self, R2 other)R2
__init__(self, SR2 other)R2
__init__(self, R3 other)R2
__init__(self, SFR3 other)R2
__init__(self, R4 other)R2
__init__(self, SFFR4 other)R2
__init__(self, WFFR4 other)R2
__init__(self, SSR4 other)R2
__init__(self, SWR4 other)R2
__init__(self, WSR4 other)R2
__init__(self, WWR4 other)R2
__init__(self, Quaternion other)R2
__init__(self, MillerIndex other)R2
__init__(self, Tensor other)R2
__init__(self, Scalar other)R2
__init__(self, torch.Tensor tensor, int intmd_dim=0)R2
__isub__(R2 self, float arg0)R2
__itruediv__(R2 self, float arg0)R2
__mul__(R2 self, R2 arg0)R2
__mul__(R2 self, Vec arg0)R2
__mul__(R2 self, Scalar arg0)R2
__mul__(R2 self, float arg0)R2
__neg__(R2 self)R2
__pow__(R2 self, float arg0)R2
__radd__(R2 self, Scalar arg0)R2
__radd__(R2 self, float arg0)R2
__repr__(R2 self)R2
__rmul__(R2 self, Scalar arg0)R2
__rmul__(R2 self, float arg0)R2
__rsub__(R2 self, Scalar arg0)R2
__rsub__(R2 self, float arg0)R2
__rtruediv__(R2 self, Scalar arg0)R2
__rtruediv__(R2 self, float arg0)R2
__str__(R2 self)R2
__sub__(R2 self, R2 arg0)R2
__sub__(R2 self, Scalar arg0)R2
__sub__(R2 self, float arg0)R2
__truediv__(R2 self, Scalar arg0)R2
__truediv__(R2 self, float arg0)R2
base(self)R2
batch(self)R2
clone(R2 self)R2
contiguous(R2 self)R2
copy_(R2 self, torch.Tensor arg0, bool arg1)R2
defined(R2 self)R2
detach(R2 self)R2
detach_(R2 self)R2
device(self)R2
dim(R2 self)R2
dtype(self)R2
dynamic(self)R2
dynamic_linspace(R2 start, R2 end, int step, int dim=0)R2static
dynamic_logspace(R2 start, R2 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0)R2static
empty(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
empty(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
empty_like(R2 arg0)R2static
fill(float a, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
fill(Scalar arg0)R2static
fill(float a11, float a22, float a33, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
fill(Scalar arg0, Scalar arg1, Scalar arg2)R2static
fill(float a11, float a22, float a33, float a23, float a13, float a12, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
fill(Scalar arg0, Scalar arg1, Scalar arg2, Scalar arg3, Scalar arg4, Scalar arg5)R2static
fill(float a11, float a12, float a13, float a21, float a22, float a23, float a31, float a32, float a33, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
fill(Scalar arg0, Scalar arg1, Scalar arg2, Scalar arg3, Scalar arg4, Scalar arg5, Scalar arg6, Scalar arg7, Scalar arg8)R2static
full(float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
full(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
full_like(R2 other, float fill_value)R2static
grad(self)R2
intmd(self)R2
intmd_linspace(R2 start, R2 end, int step, int dim=0)R2static
intmd_logspace(R2 start, R2 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0)R2static
inv(R2 self)R2
item(R2 self)R2
norm(R2 self)R2
ones(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
ones(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
ones_like(R2 arg0)R2static
rand(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
rand(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
rand_like(R2 arg0)R2static
requires_grad(self)R2
requires_grad_(R2 self, bool arg0)R2
shape(self)R2
static(self)R2
tensor(R2 self)R2
to(R2 self, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2
torch(R2 self)R2
zero_(R2 self)R2
zeros(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
zeros(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False)R2static
zeros_like(R2 arg0)R2static