|
NEML2 2.0.0
|
This is the complete list of members for R2, including all inherited members.
| __add__(R2 self, R2 arg0) | R2 | |
| __add__(R2 self, Scalar arg0) | R2 | |
| __add__(R2 self, float arg0) | R2 | |
| __iadd__(R2 self, float arg0) | R2 | |
| __imul__(R2 self, float arg0) | R2 | |
| __init__(self) | R2 | |
| __init__(self, torch.Tensor tensor, int dynamic_dim, int intmd_dim) | R2 | |
| __init__(self, Vec other) | R2 | |
| __init__(self, Rot other) | R2 | |
| __init__(self, WR2 other) | R2 | |
| __init__(self, R2 other) | R2 | |
| __init__(self, SR2 other) | R2 | |
| __init__(self, R3 other) | R2 | |
| __init__(self, SFR3 other) | R2 | |
| __init__(self, R4 other) | R2 | |
| __init__(self, SFFR4 other) | R2 | |
| __init__(self, WFFR4 other) | R2 | |
| __init__(self, SSR4 other) | R2 | |
| __init__(self, SWR4 other) | R2 | |
| __init__(self, WSR4 other) | R2 | |
| __init__(self, WWR4 other) | R2 | |
| __init__(self, Quaternion other) | R2 | |
| __init__(self, MillerIndex other) | R2 | |
| __init__(self, Tensor other) | R2 | |
| __init__(self, Scalar other) | R2 | |
| __init__(self, torch.Tensor tensor, int intmd_dim=0) | R2 | |
| __isub__(R2 self, float arg0) | R2 | |
| __itruediv__(R2 self, float arg0) | R2 | |
| __mul__(R2 self, R2 arg0) | R2 | |
| __mul__(R2 self, Vec arg0) | R2 | |
| __mul__(R2 self, Scalar arg0) | R2 | |
| __mul__(R2 self, float arg0) | R2 | |
| __neg__(R2 self) | R2 | |
| __pow__(R2 self, float arg0) | R2 | |
| __radd__(R2 self, Scalar arg0) | R2 | |
| __radd__(R2 self, float arg0) | R2 | |
| __repr__(R2 self) | R2 | |
| __rmul__(R2 self, Scalar arg0) | R2 | |
| __rmul__(R2 self, float arg0) | R2 | |
| __rsub__(R2 self, Scalar arg0) | R2 | |
| __rsub__(R2 self, float arg0) | R2 | |
| __rtruediv__(R2 self, Scalar arg0) | R2 | |
| __rtruediv__(R2 self, float arg0) | R2 | |
| __str__(R2 self) | R2 | |
| __sub__(R2 self, R2 arg0) | R2 | |
| __sub__(R2 self, Scalar arg0) | R2 | |
| __sub__(R2 self, float arg0) | R2 | |
| __truediv__(R2 self, Scalar arg0) | R2 | |
| __truediv__(R2 self, float arg0) | R2 | |
| base(self) | R2 | |
| batch(self) | R2 | |
| clone(R2 self) | R2 | |
| contiguous(R2 self) | R2 | |
| copy_(R2 self, torch.Tensor arg0, bool arg1) | R2 | |
| defined(R2 self) | R2 | |
| detach(R2 self) | R2 | |
| detach_(R2 self) | R2 | |
| device(self) | R2 | |
| dim(R2 self) | R2 | |
| dtype(self) | R2 | |
| dynamic(self) | R2 | |
| dynamic_linspace(R2 start, R2 end, int step, int dim=0) | R2 | static |
| dynamic_logspace(R2 start, R2 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0) | R2 | static |
| empty(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| empty(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| empty_like(R2 arg0) | R2 | static |
| fill(float a, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| fill(Scalar arg0) | R2 | static |
| fill(float a11, float a22, float a33, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| fill(Scalar arg0, Scalar arg1, Scalar arg2) | R2 | static |
| fill(float a11, float a22, float a33, float a23, float a13, float a12, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| fill(Scalar arg0, Scalar arg1, Scalar arg2, Scalar arg3, Scalar arg4, Scalar arg5) | R2 | static |
| fill(float a11, float a12, float a13, float a21, float a22, float a23, float a31, float a32, float a33, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| fill(Scalar arg0, Scalar arg1, Scalar arg2, Scalar arg3, Scalar arg4, Scalar arg5, Scalar arg6, Scalar arg7, Scalar arg8) | R2 | static |
| full(float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| full(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, float fill_value, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| full_like(R2 other, float fill_value) | R2 | static |
| grad(self) | R2 | |
| intmd(self) | R2 | |
| intmd_linspace(R2 start, R2 end, int step, int dim=0) | R2 | static |
| intmd_logspace(R2 start, R2 end, int step, int dim=0, Number|torch.SymInt|torch.SymFloat|torch.SymBool base=10.0) | R2 | static |
| inv(R2 self) | R2 | |
| item(R2 self) | R2 | |
| norm(R2 self) | R2 | |
| ones(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| ones(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| ones_like(R2 arg0) | R2 | static |
| rand(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| rand(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| rand_like(R2 arg0) | R2 | static |
| requires_grad(self) | R2 | |
| requires_grad_(R2 self, bool arg0) | R2 | |
| shape(self) | R2 | |
| static(self) | R2 | |
| tensor(R2 self) | R2 | |
| to(R2 self, *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | |
| torch(R2 self) | R2 | |
| zero_(R2 self) | R2 | |
| zeros(*, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| zeros(tuple[int,...] dynamic_sizes, tuple[int,...] intmd_sizes=(), *, torch.dtype dtype=..., torch.device device=..., bool requires_grad=False) | R2 | static |
| zeros_like(R2 arg0) | R2 | static |