Line data Source code
1 : // Copyright 2024, UChicago Argonne, LLC
2 : // All Rights Reserved
3 : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
4 : // By: Argonne National Laboratory
5 : // OPEN SOURCE LICENSE (MIT)
6 : //
7 : // Permission is hereby granted, free of charge, to any person obtaining a copy
8 : // of this software and associated documentation files (the "Software"), to deal
9 : // in the Software without restriction, including without limitation the rights
10 : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 : // copies of the Software, and to permit persons to whom the Software is
12 : // furnished to do so, subject to the following conditions:
13 : //
14 : // The above copyright notice and this permission notice shall be included in
15 : // all copies or substantial portions of the Software.
16 : //
17 : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 : // THE SOFTWARE.
24 :
25 : #include "neml2/user_tensors/UserPrimitiveTensor.h"
26 :
27 : #include "neml2/tensors/tensors.h"
28 : #include "neml2/misc/assertions.h"
29 :
30 : namespace neml2
31 : {
32 : template <typename T>
33 : OptionSet
34 44 : UserPrimitiveTensor<T>::expected_options()
35 : {
36 : // This is the only way of getting tensor type in a static method like this...
37 : // Trim 6 chars to remove 'neml2::'
38 44 : auto tensor_type = utils::demangle(typeid(T).name()).substr(7);
39 :
40 44 : OptionSet options = UserTensorBase::expected_options();
41 44 : options.doc() =
42 : "Construct a " + tensor_type +
43 : " from a vector values. The vector will be reshaped according to the specified batch shape.";
44 :
45 88 : options.set<std::vector<double>>("values");
46 44 : options.set("values").doc() = "Values in this (flattened) tensor";
47 :
48 132 : options.set<TensorShape>("batch_shape") = {};
49 44 : options.set("batch_shape").doc() = "Batch shape";
50 :
51 88 : return options;
52 44 : }
53 :
54 : template <typename T>
55 162 : UserPrimitiveTensor<T>::UserPrimitiveTensor(const OptionSet & options)
56 162 : : T(T::empty(options.get<TensorShape>("batch_shape"), default_tensor_options())),
57 324 : UserTensorBase(options)
58 : {
59 162 : auto vals = options.get<std::vector<double>>("values");
60 162 : auto flat = Tensor::create(vals, default_tensor_options());
61 162 : if (vals.size() == size_t(this->base_storage()))
62 198 : this->index_put_({indexing::Ellipsis}, flat.reshape(this->base_sizes()));
63 96 : else if (vals.size() == size_t(utils::storage_size(this->sizes())))
64 288 : this->index_put_({indexing::Ellipsis}, flat.reshape(this->sizes()));
65 : else
66 0 : neml_assert(false,
67 : "Number of values ",
68 0 : vals.size(),
69 : " must equal to either the base storage size ",
70 0 : this->base_storage(),
71 : " or the total storage size ",
72 0 : utils::storage_size(this->sizes()));
73 324 : }
74 :
75 : #define USERPRIMITIVETENSOR_REGISTER(T) \
76 : using User##T = UserPrimitiveTensor<T>; \
77 : register_NEML2_object_alias(User##T, #T)
78 : FOR_ALL_PRIMITIVETENSOR(USERPRIMITIVETENSOR_REGISTER);
79 : } // namespace neml2
|