LCOV - code coverage report
Current view: top level - models/solid_mechanics - KocksMeckingFlowViscosity.cxx (source / functions) Coverage Total Hit
Test: coverage.info Lines: 98.8 % 83 82
Test Date: 2025-10-02 16:03:03 Functions: 100.0 % 3 3

            Line data    Source code
       1              : // Copyright 2024, UChicago Argonne, LLC
       2              : // All Rights Reserved
       3              : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
       4              : // By: Argonne National Laboratory
       5              : // OPEN SOURCE LICENSE (MIT)
       6              : //
       7              : // Permission is hereby granted, free of charge, to any person obtaining a copy
       8              : // of this software and associated documentation files (the "Software"), to deal
       9              : // in the Software without restriction, including without limitation the rights
      10              : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      11              : // copies of the Software, and to permit persons to whom the Software is
      12              : // furnished to do so, subject to the following conditions:
      13              : //
      14              : // The above copyright notice and this permission notice shall be included in
      15              : // all copies or substantial portions of the Software.
      16              : //
      17              : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
      18              : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
      19              : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
      20              : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
      21              : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
      22              : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
      23              : // THE SOFTWARE.
      24              : 
      25              : #include "neml2/models/solid_mechanics/KocksMeckingFlowViscosity.h"
      26              : #include "neml2/tensors/Scalar.h"
      27              : #include "neml2/tensors/functions/pow.h"
      28              : #include "neml2/tensors/functions/exp.h"
      29              : 
      30              : namespace neml2
      31              : {
      32              : register_NEML2_object(KocksMeckingFlowViscosity);
      33              : 
      34              : OptionSet
      35            2 : KocksMeckingFlowViscosity::expected_options()
      36              : {
      37            2 :   OptionSet options = Model::expected_options();
      38            2 :   options.doc() =
      39              :       "Calculates the temperature-dependent flow viscosity for a Perzyna-type model using the "
      40              :       "Kocks-Mecking model.  The value is \\f$ \\eta = \\exp{B} \\mu "
      41              :       "\\dot{\\varepsilon}_0^\\frac{-k T A}{\\mu b^3} \\f$ with \\f$ \\mu "
      42              :       "\\f$ the shear modulus, \\f$ \\dot{\\varepsilon}_0 \\f$ a reference strain rate,  \\f$ b "
      43              :       "\\f$ the Burgers vector, "
      44              :       "\\f$  k\\f$ the Boltzmann constant, "
      45              :       "\\f$ T \\f$ absolute temperature, \\f$ A \\f$ the Kocks-Mecking slope parameter, and \\f$ B "
      46            2 :       "\\f$ the Kocks-Mecking intercept parameter.";
      47              : 
      48            4 :   options.set<bool>("define_second_derivatives") = true;
      49              : 
      50            4 :   options.set_parameter<TensorName<Scalar>>("A");
      51            4 :   options.set("A").doc() = "The Kocks-Mecking slope parameter";
      52            4 :   options.set_parameter<TensorName<Scalar>>("B");
      53            4 :   options.set("B").doc() = "The Kocks-Mecking intercept parameter";
      54            4 :   options.set_parameter<TensorName<Scalar>>("shear_modulus");
      55            4 :   options.set("shear_modulus").doc() = "The shear modulus";
      56              : 
      57            4 :   options.set<double>("eps0");
      58            4 :   options.set("eps0").doc() = "The reference strain rate";
      59              : 
      60            4 :   options.set<double>("k");
      61            4 :   options.set("k").doc() = "Boltzmann constant";
      62            4 :   options.set<double>("b");
      63            2 :   options.set("b").doc() = "The Burgers vector";
      64              : 
      65            6 :   options.set_input("temperature") = VariableName(FORCES, "T");
      66            2 :   options.set("temperature").doc() = "Absolute temperature";
      67              : 
      68            2 :   return options;
      69            0 : }
      70              : 
      71            2 : KocksMeckingFlowViscosity::KocksMeckingFlowViscosity(const OptionSet & options)
      72              :   : Model(options),
      73            6 :     _A(declare_parameter<Scalar>("A", "A", /*allow_nonlinear=*/true)),
      74            8 :     _B(declare_parameter<Scalar>("B", "B", /*allow_nonlinear=*/true)),
      75           10 :     _mu(declare_parameter<Scalar>("mu", "shear_modulus", /*allow_nonlinear=*/true)),
      76            4 :     _eps0(options.get<double>("eps0")),
      77            4 :     _k(options.get<double>("k")),
      78           10 :     _b3(options.get<double>("b") * options.get<double>("b") * options.get<double>("b")),
      79            2 :     _T(declare_input_variable<Scalar>("temperature")),
      80            4 :     _eta(declare_output_variable<Scalar>(VariableName(PARAMETERS, name())))
      81              : {
      82            2 : }
      83              : 
      84              : void
      85            6 : KocksMeckingFlowViscosity::set_value(bool out, bool dout_din, bool d2out_din2)
      86              : {
      87            6 :   auto post = pow(_eps0, _k * _T * _A / (_mu * _b3));
      88              : 
      89            6 :   if (out)
      90            4 :     _eta = exp(_B) * _mu * post;
      91              : 
      92            6 :   if (dout_din)
      93              :   {
      94            3 :     if (_T.is_dependent())
      95            3 :       _eta.d(_T) = _A * exp(_B) * _k * std::log(_eps0) * post / _b3;
      96              : 
      97            9 :     if (const auto * const A = nl_param("A"))
      98            2 :       _eta.d(*A) = exp(_B) * _k * _T * std::log(_eps0) * post / _b3;
      99              : 
     100            9 :     if (const auto * const B = nl_param("B"))
     101            2 :       _eta.d(*B) = exp(_B) * _mu * post;
     102              : 
     103            9 :     if (const auto * const mu = nl_param("mu"))
     104            2 :       _eta.d(*mu) = exp(_B) * post * (1.0 - _A * _k * _T * std::log(_eps0) / (_b3 * _mu));
     105              :   }
     106              : 
     107            6 :   if (d2out_din2)
     108              :   {
     109              :     // T
     110            2 :     if (_T.is_dependent())
     111              :     {
     112            2 :       _eta.d(_T, _T) = pow(_A * _k * std::log(_eps0) / _b3, 2.0) * exp(_B) * post / _mu;
     113              : 
     114            6 :       if (const auto * const A = nl_param("A"))
     115            4 :         _eta.d(_T, *A) = exp(_B) * _k * std::log(_eps0) * post / _b3 *
     116            5 :                          (std::log(_eps0) * _A * _k * _T / (_b3 * _mu) + 1.0);
     117              : 
     118            6 :       if (const auto * const B = nl_param("B"))
     119            1 :         _eta.d(_T, *B) = _A * exp(_B) * _k * std::log(_eps0) * post / _b3;
     120              : 
     121            6 :       if (const auto * const mu = nl_param("mu"))
     122            1 :         _eta.d(_T, *mu) = -pow(_A * _k * std::log(_eps0) / (_b3 * _mu), 2.0) * exp(_B) * _T * post;
     123              :     }
     124              : 
     125              :     // A
     126            6 :     if (const auto * const A = nl_param("A"))
     127              :     {
     128            1 :       if (_T.is_dependent())
     129            4 :         _eta.d(*A, _T) = exp(_B) * _k * std::log(_eps0) * post / _b3 *
     130            5 :                          (std::log(_eps0) * _A * _k * _T / (_b3 * _mu) + 1.0);
     131              : 
     132            1 :       _eta.d(*A, *A) = exp(_B) * pow(_k * _T * std::log(_eps0) / _b3, 2.0) * post / _mu;
     133              : 
     134            3 :       if (const auto * const B = nl_param("B"))
     135            1 :         _eta.d(*A, *B) = exp(_B) * _k * _T * std::log(_eps0) * post / _b3;
     136              : 
     137            3 :       if (const auto * const mu = nl_param("mu"))
     138            1 :         _eta.d(*A, *mu) = -_A * exp(_B) * pow(_k * _T * std::log(_eps0) / (_b3 * _mu), 2.0) * post;
     139              :     }
     140              : 
     141              :     // B
     142            6 :     if (const auto * const B = nl_param("B"))
     143              :     {
     144            1 :       if (_T.is_dependent())
     145            1 :         _eta.d(*B, _T) = _A * exp(_B) * _k * std::log(_eps0) * post / _b3;
     146              : 
     147            3 :       if (const auto * const A = nl_param("A"))
     148            1 :         _eta.d(*B, *A) = exp(_B) * _k * _T * std::log(_eps0) * post / _b3;
     149              : 
     150            1 :       _eta.d(*B, *B) = exp(_B) * _mu * post;
     151              : 
     152            3 :       if (const auto * const mu = nl_param("mu"))
     153            2 :         _eta.d(*B, *mu) =
     154            3 :             exp(_B) * post * (_b3 * _mu - _A * _k * _T * std::log(_eps0)) / (_b3 * _mu);
     155              :     }
     156              : 
     157              :     // mu
     158            6 :     if (const auto * const mu = nl_param("mu"))
     159              :     {
     160            1 :       if (_T.is_dependent())
     161            1 :         _eta.d(*mu, _T) = -exp(_B) * pow(_A * _k * std::log(_eps0) / (_b3 * _mu), 2.0) * _T * post;
     162              : 
     163            3 :       if (const auto * const A = nl_param("A"))
     164            1 :         _eta.d(*mu, *A) = -_A * exp(_B) * pow(_k * _T * std::log(_eps0) / (_b3 * _mu), 2.0) * post;
     165              : 
     166            3 :       if (const auto * const B = nl_param("B"))
     167            2 :         _eta.d(*mu, *B) =
     168            3 :             exp(_B) * post * (_b3 * _mu - _A * _k * _T * std::log(_eps0)) / (_b3 * _mu);
     169              : 
     170            2 :       _eta.d(*mu, *mu) =
     171            3 :           -pow(_A * _k * _T * std::log(_eps0) / (_b3 * _mu), 2.0) * exp(_B) * post / _mu;
     172              :     }
     173              :   }
     174            6 : }
     175              : } // namespace neml2
        

Generated by: LCOV version 2.0-1