Line data Source code
1 : // Copyright 2024, UChicago Argonne, LLC
2 : // All Rights Reserved
3 : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
4 : // By: Argonne National Laboratory
5 : // OPEN SOURCE LICENSE (MIT)
6 : //
7 : // Permission is hereby granted, free of charge, to any person obtaining a copy
8 : // of this software and associated documentation files (the "Software"), to deal
9 : // in the Software without restriction, including without limitation the rights
10 : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 : // copies of the Software, and to permit persons to whom the Software is
12 : // furnished to do so, subject to the following conditions:
13 : //
14 : // The above copyright notice and this permission notice shall be included in
15 : // all copies or substantial portions of the Software.
16 : //
17 : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 : // THE SOFTWARE.
24 :
25 : #include "neml2/models/phase_field_fracture/RationalDegradationFunction.h"
26 : #include "neml2/tensors/functions/pow.h"
27 : #include "neml2/tensors/Scalar.h"
28 :
29 : namespace neml2
30 : {
31 : register_NEML2_object(RationalDegradationFunction);
32 :
33 : OptionSet
34 2 : RationalDegradationFunction::expected_options()
35 : {
36 2 : OptionSet options = DegradationFunction::expected_options();
37 2 : options.doc() =
38 : "Power degradation function to degrade the elastic strain energy density, \\f$ g "
39 : "= \\frac{\\left( 1-d \\right)^p}{\\left( 1-d \\right)^p + Q\\left(d \\right)} \\f$ where, "
40 2 : "\\f$ Q\\left(d \\right) = b_{1}d\\left( 1+b_{2}d+b_{2}b_{3}d^2 \\right)\\f$";
41 4 : options.set<TensorName<Scalar>>("power");
42 4 : options.set("power").doc() = "Power of the degradation function";
43 :
44 4 : options.set<double>("eta") = 0;
45 4 : options.set("eta").doc() = "Residual degradation when d = 1";
46 :
47 4 : options.set<TensorName<Scalar>>("fitting_param_1");
48 4 : options.set("fitting_param_1").doc() = "Material dependent fitting parameter 1";
49 :
50 4 : options.set<TensorName<Scalar>>("fitting_param_2");
51 4 : options.set("fitting_param_2").doc() = "Material dependent fitting parameter 2";
52 :
53 4 : options.set<TensorName<Scalar>>("fitting_param_3");
54 4 : options.set("fitting_param_3").doc() = "Material dependent fitting parameter 3";
55 :
56 2 : options.set<bool>("define_second_derivatives") = true;
57 :
58 2 : return options;
59 0 : }
60 :
61 1 : RationalDegradationFunction::RationalDegradationFunction(const OptionSet & options)
62 : : DegradationFunction(options),
63 4 : _p(declare_parameter<Scalar>("p", "power")),
64 1 : _eta(options.get<double>("eta")),
65 4 : _b1(declare_parameter<Scalar>("b1", "fitting_param_1")),
66 4 : _b2(declare_parameter<Scalar>("b2", "fitting_param_2")),
67 5 : _b3(declare_parameter<Scalar>("b3", "fitting_param_3"))
68 :
69 : {
70 1 : }
71 :
72 : void
73 3 : RationalDegradationFunction::set_value(bool out, bool dout_din, bool d2out_din2)
74 : {
75 3 : auto Q = _b1 * _d * (1 + _b2 * _d + _b2 * _b3 * _d * _d);
76 3 : if (out)
77 : {
78 1 : _g = pow((1 - _d), _p) / (pow((1 - _d), _p) + Q) * (1 - _eta) + _eta;
79 : }
80 :
81 3 : auto Q_prime = _b1 * (1 + 2 * _b2 * _d + 3 * _b2 * _b3 * _d * _d);
82 6 : auto u = _p * (pow((1 - _d), _p) + Q) * pow((1 - _d), (_p - 1)) * (-1.0) -
83 9 : pow((1 - _d), _p) * (_p * pow((1 - _d), (_p - 1)) * (-1.0) + Q_prime);
84 3 : auto v = (pow((1 - _d), _p) + Q) * (pow((1 - _d), _p) + Q);
85 :
86 3 : if (dout_din)
87 : {
88 1 : _g.d(_d) = (u / v) * (1 - _eta);
89 : }
90 :
91 3 : auto Q_double_prime = _b1 * (2 * _b2 + 6 * _b2 * _b3 * _d);
92 : auto u_prime =
93 6 : _p * ((_p * pow((1 - _d), (_p - 1)) * (-1.0) + Q_prime) * pow((1 - _d), (_p - 1)) * (-1.0) +
94 12 : (_p - 1) * pow((1 - _d), (_p - 2)) * (pow((1 - _d), _p) + Q)) -
95 6 : pow((1 - _d), _p) * (_p * (_p - 1) * pow((1 - _d), (_p - 2)) + Q_double_prime) -
96 9 : (_p * pow((1 - _d), (_p - 1)) * (-1.0) + Q_prime) * _p * pow((1 - _d), (_p - 1)) * (-1.0);
97 3 : auto v_prime = 2 * (pow((1 - _d), _p) + Q) * (_p * pow((1 - _d), (_p - 1)) * (-1.0) + Q_prime);
98 :
99 3 : if (d2out_din2)
100 : {
101 1 : _g.d(_d, _d) = ((v * u_prime - u * v_prime) / (v * v)) * (1 - _eta);
102 : }
103 3 : }
104 : } // namespace neml2
|