Line data Source code
1 : // Copyright 2024, UChicago Argonne, LLC
2 : // All Rights Reserved
3 : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
4 : // By: Argonne National Laboratory
5 : // OPEN SOURCE LICENSE (MIT)
6 : //
7 : // Permission is hereby granted, free of charge, to any person obtaining a copy
8 : // of this software and associated documentation files (the "Software"), to deal
9 : // in the Software without restriction, including without limitation the rights
10 : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 : // copies of the Software, and to permit persons to whom the Software is
12 : // furnished to do so, subject to the following conditions:
13 : //
14 : // The above copyright notice and this permission notice shall be included in
15 : // all copies or substantial portions of the Software.
16 : //
17 : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 : // THE SOFTWARE.
24 :
25 : #include "neml2/models/solid_mechanics/Normality.h"
26 : #include "neml2/base/guards.h"
27 : #include "neml2/misc/assertions.h"
28 :
29 : namespace neml2
30 : {
31 : register_NEML2_object(Normality);
32 :
33 : OptionSet
34 2 : Normality::expected_options()
35 : {
36 2 : OptionSet options = Model::expected_options();
37 2 : options.doc() = "Store the first derivatives of a scalar-valued function in given variables, "
38 2 : "i.e. \\f$ u_i = \\dfrac{f(\\boldsymbol{v})}{v_i} \\f$.";
39 :
40 4 : options.set<std::string>("model");
41 4 : options.set("model").doc() = "The model which evaluates the scalar-valued function";
42 :
43 4 : options.set<VariableName>("function");
44 4 : options.set("function").doc() = "Function to take derivative";
45 :
46 4 : options.set<std::vector<VariableName>>("from");
47 4 : options.set("from").doc() = "Function arguments to take derivatives w.r.t.";
48 :
49 4 : options.set<std::vector<VariableName>>("to");
50 2 : options.set("to").doc() = "Variables to store the first derivatives";
51 :
52 2 : return options;
53 0 : }
54 :
55 4 : Normality::Normality(const OptionSet & options)
56 : : Model(options),
57 8 : _model(register_model(options.get<std::string>("model"))),
58 12 : _f(options.get<VariableName>("function"))
59 : {
60 : // Set up the conjugate pairs
61 8 : const auto from = options.get<std::vector<VariableName>>("from");
62 4 : const auto to = options.get<std::vector<VariableName>>("to");
63 4 : neml_assert(from.size() == to.size(),
64 : "The conjugate pairs should have a one-to-one correspondance. ",
65 4 : from.size(),
66 : " variables are being mapped to ",
67 4 : to.size(),
68 : " variables.");
69 :
70 : // Declare output variables
71 11 : for (size_t i = 0; i < from.size(); i++)
72 7 : _conjugate_pairs.emplace(from[i], clone_output_variable(_model.input_variable(from[i]), to[i]));
73 4 : }
74 :
75 : void
76 8 : Normality::set_value(bool out, bool dout_din, bool /*d2out_din2*/)
77 : {
78 : {
79 8 : SolvingNonlinearSystem guard(false);
80 : // Since normality maps the derivatives to the output variables, we need to evaluate the
81 : // sub-model's derivatives if normality asks for output variables, and evaluate the sub-model's
82 : // second derivatives if normality asks for derivatives of output variables.
83 8 : _model.forward_maybe_jit(false, out, dout_din);
84 8 : }
85 :
86 8 : const auto & fvar = _model.output_variable(_f);
87 22 : for (auto && [iname, ivar] : _conjugate_pairs)
88 : {
89 14 : if (!fvar.derivatives().count(iname))
90 : {
91 0 : (*ivar) = Tensor::zeros(ivar->base_sizes(), fvar.options());
92 0 : continue;
93 : }
94 :
95 14 : if (out)
96 11 : (*ivar) = fvar.derivatives().at(iname).base_reshape(ivar->base_sizes());
97 :
98 14 : if (dout_din)
99 24 : for (auto && [jname, jvar] : _model.input_variables())
100 28 : if (jvar->is_dependent() && fvar.second_derivatives().count(iname) &&
101 11 : fvar.second_derivatives().at(iname).count(jname))
102 8 : ivar->d(*jvar) = fvar.second_derivatives().at(iname).at(jname);
103 : }
104 8 : }
105 : } // namespace neml2
|