Line data Source code
1 : // Copyright 2024, UChicago Argonne, LLC
2 : // All Rights Reserved
3 : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
4 : // By: Argonne National Laboratory
5 : // OPEN SOURCE LICENSE (MIT)
6 : //
7 : // Permission is hereby granted, free of charge, to any person obtaining a copy
8 : // of this software and associated documentation files (the "Software"), to deal
9 : // in the Software without restriction, including without limitation the rights
10 : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 : // copies of the Software, and to permit persons to whom the Software is
12 : // furnished to do so, subject to the following conditions:
13 : //
14 : // The above copyright notice and this permission notice shall be included in
15 : // all copies or substantial portions of the Software.
16 : //
17 : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 : // THE SOFTWARE.
24 :
25 : #include "neml2/models/solid_mechanics/KocksMeckingRateSensitivity.h"
26 : #include "neml2/tensors/Scalar.h"
27 :
28 : namespace neml2
29 : {
30 : register_NEML2_object(KocksMeckingRateSensitivity);
31 :
32 : OptionSet
33 2 : KocksMeckingRateSensitivity::expected_options()
34 : {
35 2 : OptionSet options = Model::expected_options();
36 2 : options.doc() =
37 : "Calculates the temperature-dependent rate sensitivity for a Perzyna-type model using the "
38 : "Kocks-Mecking model. The value is \\f$ n = \\frac{\\mu b^3}{k T A} \\f$ with \\f$ \\mu "
39 : "\\f$ the shear modulus, \\f$ b \\f$ the Burgers vector, \\f$ k\\f$ the Boltzmann constant, "
40 2 : "\\f$ T \\f$ absolute temperature, and \\f$ A \\f$ the Kocks-Mecking slope parameter.";
41 :
42 4 : options.set<bool>("define_second_derivatives") = true;
43 :
44 4 : options.set_parameter<TensorName<Scalar>>("A");
45 4 : options.set("A").doc() = "The Kocks-Mecking slope parameter";
46 4 : options.set_parameter<TensorName<Scalar>>("shear_modulus");
47 4 : options.set("shear_modulus").doc() = "The shear modulus";
48 :
49 4 : options.set<double>("k");
50 4 : options.set("k").doc() = "Boltzmann constant";
51 4 : options.set<double>("b");
52 2 : options.set("b").doc() = "The Burgers vector";
53 :
54 6 : options.set_input("temperature") = VariableName(FORCES, "T");
55 2 : options.set("temperature").doc() = "Absolute temperature";
56 :
57 2 : return options;
58 0 : }
59 :
60 2 : KocksMeckingRateSensitivity::KocksMeckingRateSensitivity(const OptionSet & options)
61 : : Model(options),
62 6 : _A(declare_parameter<Scalar>("A", "A", /*allow_nonlinear=*/true)),
63 10 : _mu(declare_parameter<Scalar>("mu", "shear_modulus", /*allow_nonlinear=*/true)),
64 4 : _k(options.get<double>("k")),
65 10 : _b3(options.get<double>("b") * options.get<double>("b") * options.get<double>("b")),
66 2 : _T(declare_input_variable<Scalar>("temperature")),
67 4 : _m(declare_output_variable<Scalar>(VariableName(PARAMETERS, name())))
68 : {
69 2 : }
70 :
71 : void
72 6 : KocksMeckingRateSensitivity::set_value(bool out, bool dout_din, bool d2out_din2)
73 : {
74 6 : if (out)
75 4 : _m = -_mu * _b3 / (_k * _T * _A);
76 :
77 6 : if (dout_din)
78 : {
79 3 : if (_T.is_dependent())
80 3 : _m.d(_T) = _b3 * _mu / (_A * _k * _T * _T);
81 9 : if (const auto * const mu = nl_param("mu"))
82 2 : _m.d(*mu) = -_b3 / (_A * _k * _T);
83 9 : if (const auto * const A = nl_param("A"))
84 2 : _m.d(*A) = _b3 * _mu / (_A * _A * _k * _T);
85 : }
86 :
87 6 : if (d2out_din2)
88 : {
89 : // T, T
90 2 : if (_T.is_dependent())
91 2 : _m.d(_T, _T) = -2.0 * _b3 * _mu / (_A * _k * _T * _T * _T);
92 :
93 6 : if (const auto * const A = nl_param("A"))
94 : {
95 : // A, A
96 1 : _m.d(*A, *A) = -2.0 * _b3 * _mu / (_A * _A * _A * _k * _T);
97 : // A, T and T, A
98 1 : if (_T.is_dependent())
99 : {
100 1 : auto AT = -_b3 * _mu / (_A * _A * _k * _T * _T);
101 1 : _m.d(*A, _T) = AT;
102 1 : _m.d(_T, *A) = AT;
103 1 : }
104 : }
105 :
106 6 : if (const auto * const mu = nl_param("mu"))
107 : {
108 : // mu, T and T, mu
109 1 : if (_T.is_dependent())
110 : {
111 1 : auto MT = _b3 / (_A * _k * _T * _T);
112 1 : _m.d(*mu, _T) = MT;
113 1 : _m.d(_T, *mu) = MT;
114 1 : }
115 :
116 3 : if (const auto * const A = nl_param("A"))
117 : {
118 : // mu, A and A, mu
119 1 : auto MA = _b3 / (_A * _A * _k * _T);
120 1 : _m.d(*mu, *A) = MA;
121 1 : _m.d(*A, *mu) = MA;
122 1 : }
123 : }
124 : }
125 6 : }
126 : } // namespace neml2
|