Line data Source code
1 : // Copyright 2024, UChicago Argonne, LLC
2 : // All Rights Reserved
3 : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
4 : // By: Argonne National Laboratory
5 : // OPEN SOURCE LICENSE (MIT)
6 : //
7 : // Permission is hereby granted, free of charge, to any person obtaining a copy
8 : // of this software and associated documentation files (the "Software"), to deal
9 : // in the Software without restriction, including without limitation the rights
10 : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 : // copies of the Software, and to permit persons to whom the Software is
12 : // furnished to do so, subject to the following conditions:
13 : //
14 : // The above copyright notice and this permission notice shall be included in
15 : // all copies or substantial portions of the Software.
16 : //
17 : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 : // THE SOFTWARE.
24 :
25 : #include "neml2/models/chemical_reactions/DiffusionLimitedReaction.h"
26 : #include "neml2/misc/assertions.h"
27 :
28 : namespace neml2
29 : {
30 : register_NEML2_object(DiffusionLimitedReaction);
31 :
32 : OptionSet
33 2 : DiffusionLimitedReaction::expected_options()
34 : {
35 2 : OptionSet options = Model::expected_options();
36 2 : options.doc() = "Calculate the void fraction rate of change";
37 :
38 6 : options.set_input("product_inner_radius") = VariableName{"state", "ri"};
39 2 : options.set("product_inner_radius").doc() = "Inner radius of the product phase";
40 6 : options.set_input("solid_inner_radius") = VariableName{"state", "ro"};
41 4 : options.set("solid_inner_radius").doc() = "Inner raidus of the solid phase";
42 4 : options.set<double>("product_dummy_thickness") = 0.01;
43 2 : options.set("product_dummy_thickness").doc() = "Minimum product thickness to avoid division by 0";
44 :
45 6 : options.set_input("liquid_reactivity") = VariableName{"state", "R_l"};
46 2 : options.set("liquid_reactivity").doc() = "Reactivity of the liquid phase, between 0 and 1";
47 6 : options.set_input("solid_reactivity") = VariableName{"state", "R_s"};
48 2 : options.set("solid_reactivity").doc() = "Reactivity of the solid phase, between 0 and 1";
49 :
50 6 : options.set_output("reaction_rate") = VariableName{"state", "alpha_rate"};
51 4 : options.set("reaction_rate").doc() = "Product phase substance (mol/V) rate of change";
52 :
53 4 : options.set_parameter<TensorName<Scalar>>("diffusion_coefficient");
54 6 : options.set("diffusion_coefficient").doc() =
55 2 : "Diffusion coefficient of the rate-limiting species in the product phase";
56 :
57 4 : options.set<double>("molar_volume");
58 2 : options.set("molar_volume").doc() = "Molar volume of the rate-limiting (liquid) species";
59 :
60 2 : return options;
61 0 : }
62 :
63 1 : DiffusionLimitedReaction::DiffusionLimitedReaction(const OptionSet & options)
64 : : Model(options),
65 1 : _ri(declare_input_variable<Scalar>("product_inner_radius")),
66 1 : _ro(declare_input_variable<Scalar>("solid_inner_radius")),
67 1 : _delta(options.get<double>("product_dummy_thickness")),
68 1 : _R_l(declare_input_variable<Scalar>("liquid_reactivity")),
69 1 : _R_s(declare_input_variable<Scalar>("solid_reactivity")),
70 1 : _rate(declare_output_variable<Scalar>("reaction_rate")),
71 5 : _D(declare_parameter<Scalar>("D", "diffusion_coefficient")),
72 2 : _omega(options.get<double>("molar_volume"))
73 : {
74 1 : }
75 :
76 : void
77 2 : DiffusionLimitedReaction::set_value(bool out, bool dout_din, bool d2out_din2)
78 : {
79 2 : neml_assert_dbg(!d2out_din2, "Second derivatives not implemented");
80 :
81 2 : const auto factor = 2 * _D * _R_l * _R_s / _omega;
82 2 : const auto ratio = _ro / (_ro - _ri + _delta);
83 :
84 2 : if (out)
85 : {
86 1 : _rate = factor * ratio;
87 : }
88 :
89 2 : if (dout_din)
90 : {
91 1 : const auto drate = factor / (_ro - _ri + _delta) / (_ro - _ri + _delta);
92 :
93 1 : _rate.d(_ri) = drate * _ro;
94 1 : _rate.d(_ro) = drate * (-_ri + _delta);
95 1 : _rate.d(_R_l) = 2 * _D * _R_s / _omega * ratio;
96 1 : _rate.d(_R_s) = 2 * _D * _R_l / _omega * ratio;
97 1 : }
98 2 : }
99 : } // namespace neml2
|