LCOV - code coverage report
Current view: top level - models - ImplicitUpdate.cxx (source / functions) Coverage Total Hit
Test: coverage.info Lines: 98.5 % 67 66
Test Date: 2025-06-29 01:25:44 Functions: 100.0 % 5 5

            Line data    Source code
       1              : // Copyright 2024, UChicago Argonne, LLC
       2              : // All Rights Reserved
       3              : // Software Name: NEML2 -- the New Engineering material Model Library, version 2
       4              : // By: Argonne National Laboratory
       5              : // OPEN SOURCE LICENSE (MIT)
       6              : //
       7              : // Permission is hereby granted, free of charge, to any person obtaining a copy
       8              : // of this software and associated documentation files (the "Software"), to deal
       9              : // in the Software without restriction, including without limitation the rights
      10              : // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
      11              : // copies of the Software, and to permit persons to whom the Software is
      12              : // furnished to do so, subject to the following conditions:
      13              : //
      14              : // The above copyright notice and this permission notice shall be included in
      15              : // all copies or substantial portions of the Software.
      16              : //
      17              : // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
      18              : // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
      19              : // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
      20              : // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
      21              : // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
      22              : // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
      23              : // THE SOFTWARE.
      24              : 
      25              : #include "neml2/models/ImplicitUpdate.h"
      26              : #include "neml2/models/Assembler.h"
      27              : #include "neml2/solvers/NonlinearSolver.h"
      28              : #include "neml2/tensors/functions/linalg/lu_factor.h"
      29              : #include "neml2/tensors/functions/linalg/lu_solve.h"
      30              : #include "neml2/base/guards.h"
      31              : #include "neml2/misc/assertions.h"
      32              : 
      33              : namespace neml2
      34              : {
      35              : register_NEML2_object(ImplicitUpdate);
      36              : 
      37              : OptionSet
      38            2 : ImplicitUpdate::expected_options()
      39              : {
      40            2 :   OptionSet options = Model::expected_options();
      41            2 :   options.doc() =
      42            2 :       "Update an implicit model by solving the underlying implicit system of equations.";
      43              : 
      44            4 :   options.set<std::string>("implicit_model");
      45            6 :   options.set("implicit_model").doc() =
      46            2 :       "The implicit model defining the implicit system of equations to be solved";
      47              : 
      48            4 :   options.set<std::string>("solver");
      49            4 :   options.set("solver").doc() = "Solver used to solve the implicit system";
      50              : 
      51              :   // No jitting :/
      52            4 :   options.set<bool>("jit") = false;
      53            2 :   options.set("jit").suppressed() = true;
      54              : 
      55            2 :   return options;
      56            0 : }
      57              : 
      58            9 : ImplicitUpdate::ImplicitUpdate(const OptionSet & options)
      59              :   : Model(options),
      60            9 :     _model(register_model("implicit_model", /*nonlinear=*/true)),
      61           27 :     _solver(get_solver<NonlinearSolver>("solver"))
      62              : {
      63            9 :   neml_assert(_model.output_axis().has_residual(),
      64              :               "The implicit model'",
      65            9 :               _model.name(),
      66              :               "' registered in '",
      67            9 :               name(),
      68              :               "' does not have the residual output axis.");
      69              :   // Take care of dependency registration:
      70              :   //   1. Input variables of the "implicit_model" should be *consumed* by *this* model. This has
      71              :   //      already been taken care of by the `register_model` call.
      72              :   //   2. Output variables of the "implicit_model" on the "residual" subaxis should be *provided* by
      73              :   //      *this* model.
      74           29 :   for (auto && [name, var] : _model.output_variables())
      75           20 :     clone_output_variable(*var, name.remount(STATE));
      76            9 : }
      77              : 
      78              : void
      79            5 : ImplicitUpdate::diagnose() const
      80              : {
      81            5 :   Model::diagnose();
      82            5 :   diagnostic_assert(_model.output_axis().nsubaxis() == 1,
      83              :                     "The implicit model's output contains non-residual subaxis:\n",
      84            5 :                     _model.output_axis());
      85            5 :   diagnostic_assert(_model.input_axis().has_state(),
      86              :                     "The implicit model's input does not have a state subaxis:\n",
      87            5 :                     _model.input_axis());
      88            5 :   diagnostic_assert(!_model.input_axis().has_residual(),
      89              :                     "The implicit model's input cannot have a residual subaxis:\n",
      90            5 :                     _model.input_axis());
      91           15 :   diagnostic_assert(
      92            5 :       _model.input_axis().subaxis(STATE) == _model.output_axis().subaxis(RESIDUAL),
      93              :       "The implicit model should have conformal trial state and residual. The input state "
      94              :       "subaxis is\n",
      95            5 :       _model.input_axis().subaxis(STATE),
      96              :       "\nThe output residual subaxis is\n",
      97            5 :       _model.output_axis().subaxis(RESIDUAL));
      98            5 : }
      99              : 
     100              : void
     101            9 : ImplicitUpdate::link_output_variables()
     102              : {
     103            9 :   Model::link_output_variables();
     104           29 :   for (auto && [name, var] : output_variables())
     105           20 :     var->ref(input_variable(name), /*ref_is_mutable=*/true);
     106            9 : }
     107              : 
     108              : void
     109          189 : ImplicitUpdate::set_value(bool out, bool dout_din, bool /*d2out_din2*/)
     110              : {
     111              :   // The trial state is used as the initial guess
     112          189 :   const auto sol_assember = VectorAssembler(_model.input_axis().subaxis(STATE));
     113          189 :   auto x0 = NonlinearSystem::Sol<false>(sol_assember.assemble_by_variable(_model.collect_input()));
     114              : 
     115              :   // Perform automatic scaling (using the trial state)
     116              :   // TODO: Add an interface to allow user to specify where (and when) to evaluate the Jacobian for
     117              :   // automatic scaling.
     118          189 :   _model.init_scaling(x0, _solver->verbose);
     119              : 
     120              :   // Solve for the next state
     121          189 :   NonlinearSolver::Result res;
     122              :   {
     123          189 :     SolvingNonlinearSystem solving;
     124          189 :     res = _solver->solve(_model, x0);
     125          189 :     neml_assert(res.ret == NonlinearSolver::RetCode::SUCCESS, "Nonlinear solve failed.");
     126          189 :   }
     127              : 
     128          189 :   if (out)
     129              :   {
     130              :     // You may be tempted to assign the solution, i.e., res.solution, to the output variables. But
     131              :     // we don't have to. Think about it: The output variables share the same name as those input
     132              :     // variables on the state subaxis, and since we don't duplicate storage for variables with the
     133              :     // same name, they are essentially the same variable with FType::INPUT | FType::OUTPUT. During
     134              :     // the nonlinear solve, we have to iteratively update the guess (i.e., the input variables on
     135              :     // the state subaxis) until convergece. Once the nonlinear system has converged, the input
     136              :     // variables on the state subaxis _must_ contain the solution. Therefore, the output variables
     137              :     // _must_ also contain the solution upon convergence.
     138              : 
     139              :     // All that being said, if the result has AD graph, we need to propagate the graph to the output
     140          187 :     if (res.solution.requires_grad())
     141           26 :       assign_output(sol_assember.split_by_variable(res.solution));
     142              :   }
     143              : 
     144              :   // Use the implicit function theorem (IFT) to calculate the other derivatives
     145          189 :   if (dout_din)
     146              :   {
     147              :     // IFT requires the Jacobian evaluated at the solution:
     148            3 :     _model.forward_maybe_jit(false, true, false);
     149            3 :     const auto jac_assembler = MatrixAssembler(_model.output_axis(), _model.input_axis());
     150            3 :     const auto J = jac_assembler.assemble_by_variable(_model.collect_output_derivatives());
     151            3 :     const auto derivs = jac_assembler.split_by_subaxis(J).at(RESIDUAL);
     152            3 :     const auto dr_ds = derivs.at(STATE);
     153              : 
     154              :     // Factorize the Jacobian once and for all
     155            3 :     const auto [LU, pivot] = linalg::lu_factor(dr_ds);
     156              : 
     157              :     // The actual IFT:
     158           15 :     for (const auto & [subaxis, deriv] : derivs)
     159              :     {
     160           12 :       if (subaxis == STATE)
     161            3 :         continue;
     162              :       const auto ift_assembler =
     163            9 :           MatrixAssembler(output_axis(), _model.input_axis().subaxis(subaxis));
     164            9 :       assign_output_derivatives(
     165           18 :           ift_assembler.split_by_variable(-linalg::lu_solve(LU, pivot, deriv)));
     166              :     }
     167            3 :   }
     168          189 : }
     169              : } // namespace neml2
        

Generated by: LCOV version 2.0-1