|
NEML2 2.0.0
|
@insert-title:tutorials-extension
NEML2 models can be easily extended or adapted to model the material behavior of your interest.
This set of tutorials define a custom equation to model the conventional projectile motion problem:
\begin{align} \dot{\boldsymbol{x}} & = \boldsymbol{v}, \label{1} \\ \dot{\boldsymbol{v}} & = \boldsymbol{a} = \boldsymbol{g} - \mu \boldsymbol{v}, \label{2} \end{align}
where \(\boldsymbol{x}\) and \(\boldsymbol{v}\) are the position and velocity of the projectile, respectively. \(\boldsymbol{g}\) is the gravitational acceleration, and \(\mu\) is the dynamic viscosity. The projectile's trajectory can be numerically integrated using the backward-Euler method:
\begin{align} \mathbf{r} = \begin{Bmatrix} r_x \\ r_v \end{Bmatrix} & = \begin{Bmatrix} \tilde{\boldsymbol{x}} - \boldsymbol{x}_n - \left(t - t_n\right) \dot{\boldsymbol{x}} \\ \tilde{\boldsymbol{v}} - \boldsymbol{v}_n - \left(t - t_n\right) \dot{\boldsymbol{v}} \\ \end{Bmatrix}, \label{3} \\ \begin{Bmatrix} \boldsymbol{x} \\ \boldsymbol{v} \end{Bmatrix} & = \mathop{\mathrm{root}}\limits_{\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{v}}} \left( \mathbf{r} \right), \label{4} \end{align}
subject to appropriate initial conditions \(\boldsymbol{x}_0\) and \(\boldsymbol{v}_0\)
Among these equations:
ProjectileAcceleration.Each tutorial builds on top of the previous tutorials, introduces and explains one small piece in model development. It is therefore recommended to follow these tutorials in order.
@insert-subsection-list
The final model is then used in another set of tutorials on parameter calibration and inference.